韩昌骏教师主页|华南理工大学华南理工大学机械与汽车工程学院简历|韩昌骏招生信息|韩昌骏专利信息

教师主页移动版

主页 > 广东省 > 华南理工大学

韩昌骏

姓名 韩昌骏
教师编号 80369
性别
学校 华南理工大学
部门 华南理工大学机械与汽车工程学院
学位 副教授
学历 副教授
职称 副教授
联系方式 【发送到邮箱】
邮箱 【发送到邮箱】
人气
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳

更新日期:2024年3月7日 姓 名 韩昌骏 性 别 男 出生年月 1991年5月 籍贯 湖北应城市 民 族 汉族 政治面貌 中国共产党党员 最后学历 博士研究生毕业 最后学位 工学博士 技术职称 副教授 导师类别 博、硕导 行政职务 Email cjhan@scut.edu.cn 工作单位 华南理工大学机械与汽车工程学院 邮政编码 510641 通讯地址 广东省广州市天河区五山路381号 单位电话 个人主页 https://www.researchgate.net/profile/Changjun-Han 个人简介 韩昌骏,华南理工大学副教授,博士生导师。2013年9月和2018年3月分别获得华中科技大学学士和博士学位,2018年7月至2020年12月在新加坡南洋理工大学国家3D打印中心从事博士后研究,2021年1月引进华南理工大学机械与汽车工程学院工作。入选中国科协青年人才托举工程、广州市青年科技人才托举工程。主持主持国家自然科学基金青年基金、国家重点研发计划子课题、装备预研领域基金等课题近10项,获2021年第一届全国博士后创新创业大赛金奖(排1)、2023年机械工业科学技术奖科技进步三等奖、广州科技创新南山奖(青年科技人才奖)。长期从事金属增材制造研究,重点围绕高性能医用金属增材制造、仿生结构/超材料设计与增材制造、多功能金属材料增材制造、多能量场增材制造技术等方面开展基础研究。以第一作者/通讯作者在Adv. Mater., Addit. Manuf., Int. J. Mach. Tool. Manu.等国际期刊发表论文32篇(SCI共30篇,其中ESI高被引3篇,10篇影响因子>10),Google Scholar引用超3300次。申请发明专利20余项,撰写/参编英文专著各1部,参编中文专著2部,参与团体标准1项。入选2022年、2023年斯坦福大学发布的最具影响力科学家前2%名单。 工作经历 2021.1至今    华南理工大学,机械与汽车工程学院,机械电子工程系,副教授2018.7–2020.12 南洋理工大学,机械与宇航工程学院,新加坡国家3D打印中心,博士后(导师:Zhou Kun教授) 教育经历 2013.9–2018.3 华中科技大学,材料科学与工程学院,博士(硕博连读)(导师:魏青松教授)2009.9–2013.6 华中科技大学,材料科学与工程学院,学士 获奖、荣誉称号 2021第一届全国博士后创新创业大赛金奖(排1)2023年机械工业科学技术奖科技进步三等奖2023年广州科技创新南山奖(青年科技人才奖)2023 Journal of Central South University期刊Best Rising Star Award2022第八届中国国际“互联网+”大学生创新创业大赛广东省银奖、华南理工大学校赛金奖,指导教师(排3)2023第九届中国国际“互联网+”大学生创新创业大赛广东省铜奖,指导教师(排4) 社会、学会及学术兼职 Smart Manufacturing副编辑,International Journal of Extremely Manufacturing、Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers和Journal of Central South University青年编委,《中国激光》青年编委,中国有色金属学会增材制造技术专委会委员,中国机械工程学会增材制造技术分会青年委员、广东省机械工程学会增材制造(3D打印)分会副秘书长、焊接分会理事,生物医学工程学会生物3D打印与再生医学分会委员。 研究领域 金属增材制造(3D打印) 科研项目 1. 国家自然科学基金青年科学基金,2024/1-2026/12,30万,主持。2. 装备预先研究领域基金项目,2022/9 -2023/2,50万,主持。3. 中国科协青年人才托举工程,2024/1-2026/12,30万,主持。4. 广东省自然科学基金面上项目,2022/1/1-2024/12/31,10万,主持。5. 广东省区域联合基金-青年基金,2021/10/1-2024/9/30,10万,主持。6. 广州市青年科技人才托举工程,2023/1/1-2024/12/30,10万,主持。7. 广州市科技计划基础与应用基础项目,2022/4/1-2024/3/31,5万,主持。8. 企业委托项目,2022/3-2025/2,100万,主持。9. 中央高校基本科研业务费面上项目,2023/1/1-2024/12/31,10万,主持。10. 双一流建设专项,2021/1-2025/12,40万,主持。 发表论文 [1] Zhi Dong, Changjun Han*, Yanzhe Zhao, Jinmiao Huang, Chenrong Ling, Gaoling Hu, Yunhui Wang, Di Wang, Changhui Song, Yongqiang Yang. Role of heterogenous microstructure and deformation behavior in achieving superior strength-ductility synergy in pure zinc fabricated via laser powder bed fusion. International Journal of Extremely Manufacturing, 2024. (Accept) (IF: 14.7, JCR 1区,中科院1区)[2] Chaojiao Lei, Song Ren, Cunhong Yin, Xixia Liu, Mingfei Chen, Jiazhu Wu, Changjun Han*. Manipulating melt pool thermofluidic transport in directed energy deposition driven by a laser intensity spatial shaping strategy. Virtual and Physical Prototyping, 2024, 19(1): e2308513. (IF: 10.6, JCR 1区,中科院1区)[3] Kai Li, Vyacheslav Trofimov, Changjun Han*, Gaoling Hu, Zhi Dong, Yujin Zou, Zaichi Wang, Fubao Yan, Zhiqiang Fu, Yongqiang Yang. The printability, microstructure, and mechanical properties of Fe80−xMnxCo10Cr10 high-entropy alloys fabricated by laser powder bed fusion additive manufacturing. Micromachines, 2024, 15, 123. (IF: 3.4, JCR 2区,中科院3区)[4] Dan Zheng, Ruidi Li, Jingtao Kang, Mengjie Luo, Tiechui Yuan, Changjun Han*. Achieving superelastic shape recoverability in smart flexible CuAlMn metamaterials via 3D printing. International Journal of Machine Tools and Manufacture, 2024, 195, 104110. (IF=14,JCR 1区,中科院1区)[5] Yang Qi, Hu Zhang, Xu Yang, Yilong Wang, Changjun Han*, Wei Fan, Jiawei Liang, Haihong Zhu. Achieving superior high-temperature mechanical properties in Al-Cu-Li-Sc-Zr alloy with nano-scale microstructure via laser additive manufacturing. Materials Research Letters, 2024, 12(1): 17-25. (IF=8.3,JCR 1区,中科院2区)[6] Changhui Song, Jiaqi Chen, Haoyang Lei, Zhaobin Yang, Zhengtai Deng, Yueyue Li, Jianhua Wang, Yongqiang Yang, Changjun Han*. Radial gradient design enabling additively manufactured low-modulus gyroid tantalum structures. International Journal of Mechanical Sciences, 2023, 108710. (IF=7.3,JCR 1区,中科院1区)[7] Heng Zhou, Yongqiang Yang, Changjun Han*, Yang Wei, Zixin Liu, Zhiheng Tai, Shiqin Zhang, Di Wang. Laser directed energy deposition/milling hybrid additive manufacturing of thin-walled GH4169 alloy: Effect of processing strategy on its microstructure and mechanical properties. Materials Science and Engineering: A, 2023, 882, 145480. (IF=6.4,JCR 1区,中科院1区)[8] Boyuan Li1, Changjun Han1, Yuxi Xie, Paulo Jorge Da Silva Bartolo, Kun Zhou. Microstructural heterogeneity induced by thermal accumulation in a nickel–aluminum–bronze alloy additively manufactured via directed energy deposition. CIRP Annals, 2023, 72(1): 133-136. (IF=4.1,JCR 2区,中科院3区)[9] Changhui Song, Zhuang Zou, Zhongwei Yan, Xiyu Yao, Feng Liu, Yongqiang Yang, Ming Yan, Changjun Han*. Microstructural and mechanical property evolution of a nuclear zirconium-4 alloy fabricated via laser powder bed fusion and annealing heat treatment. Virtual and Physical Prototyping, 2023, 18(1): e2189597. (IF: 10.6, JCR 1区,中科院1区)[10] Changhui Song, Zhuang Zou, Zhongwei Yan, Feng Liu, Yongqiang Yang, Ming Yan, Changjun Han*. Process Optimization and Tailored Mechanical Properties of a Nuclear Zr-4 Alloy Fabricated via Laser Powder Bed Fusion. Micromachines, 2023, 14(3), 556. (IF: 3.4, JCR 2区,中科院3区)[11] Danlei Zhao, Changjun Han*, Bo Peng, Tan Cheng, Junxiang Fan, Lei Yang, Lili Chen, Qingsong Wei. Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold. Acta Biomaterialia, 2022, 153: 614-629. (IF: 9.7,JCR1区,中科院1区)[12] Boyuan Li1, Changjun Han1, Priyanka Vivegananthan, Devesh Raju Kripalani, Yujia Tian, Paulo Jorge Da Silva Bartolo, Kun Zhou. Refined microstructure and ultrahigh mechanical strength of (TiN + TiB)/Ti composites in situ synthesized via laser powder bed fusion. Additive Manufacturing Letters, 2022, 3: 100082. [13] Changhui Song, Junfei Huang, Yongqiang Yang, Changjun Han*. Laser powder bed fusion of a tungsten-nickel-ferrum alloy via in-situ alloying: Densification, microstructure, and mechanical properties. Powder Technology, 2022, 406: 117560. (IF: 5.2, JCR 1区,中科院2区)[14] Di Wang, Xiongmian Wei, Jian Liu, Yunmian Xiao, Yongqiang Yang, Linqing Liu, Chaolin Tan, Xusheng Yang, Changjun Han*. Lightweight design of an AlSi10Mg aviation control stick additively manufactured by laser powder bed fusion. Rapid Prototyping Journal, 2022, 28(10): 1869-1881. (IF: 3.9,JCR 2区,中科院3区)[15] Di Wang, Han Wang, Xiaojun Chen, Yang Liu*, Dong Lu, Xinyu Liu, Changjun Han*. Densification, tailored microstructure and mechanical properties of selective laser melted Ti–6Al–4V alloy via annealing heat treatment. Micromachines, 2022, 13, 331. (IF: 3.4,JCR 2区,中科院4区)[16] Cheng Deng, Menglong Jiang, Di Wang, Yongqiang Yang, Vyacheslav Trofimov, Lianxi Hu, Changjun Han*. Microstructure and superior corrosion resistance of an in-situ synthesized NiTi-based intermetallic coating via laser melting deposition. Nanomaterials, 2022, 12, 705. (IF: 5.3,JCR 1区,中科院3区)[17] Di Wang, Liqing Liu, Guowei Deng, Cheng Deng*, Yuchao Bai, Yongqiang Yang, Weihui Wu, Jie Chen, Yang Liu, Yonggang Wang, Xin Lin, Changjun Han*. Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion. Virtual and Physical Prototyping, 2022, 17(2), 329-365. (IF: 10.6,JCR 1区,中科院1区,ESI高被引)[18] Zhuohong Zeng, Changjun Han*, Chen-Nan Sun, Sastry Kandukuri, Yilin Zhu, Jiazhao Huang, Qingsong Wei, Kun Zhou*. Tunable isotropy on the mechanical properties of wavy hexachiral metamaterials: numerical simulation and additive manufacturing. Smart Manufacturing, 2022, 2150001.[19] Ze Chen, Changjun Han*, Ming Gao, Sastry Yagnanna Kandukuri, Kun Zhou*.A Review on Qualification and Certification for Metal Additive Manufacturing. Virtual and Physical Prototyping, 2022, 17(2), 382-405. (IF: 10.6, JCR 1区,中科院1区)[20] Boyuan Li, Changjun Han*, Joel Choon Wee Lim, Kun Zhou*. Interface formation and deformation behaviors of an additively manufactured nickel-aluminum-bronze/15-5 PH multimaterial via laser-powder directed energy deposition. Materials Science and Engineering: A, 2022, 829: 142101. (IF: 6.4,JCR 1区,中科院1区)[21] Danlei Zhao, Hang Liang, Changjun Han*, Jingjing Li, Jie Liu, Kun Zhou, Cao Yang*, Qingsong Wei*. 3D printing of a titanium-tantalum Gyroid scaffold with superb elastic admissible strain, bioactivity and in-situ bone regeneration capability. Additive Manufacturing, 2021, 47: 102223. (IF: 11, JCR 1区,中科院1区)[22] Boyuan Li, Han Zheng, Changjun Han*, Kun Zhou*. Nanotwins-containing microstructure and superior mechanical strength of a Cu-9Al-5Fe-5Ni alloy additively manufactured by laser metal deposition. Additive Manufacturing, 2021, 39: 101825. (IF: 11, JCR 1区,中科院1区)[23] Changjun Han, Qihong Fang, Yusheng Shi, Shu Beng Tor, Chee Kai Chua, Kun Zhou. Recent advances on high-entropy alloys for 3D printing. Advanced Materials, 2020, 32: 1903855. (IF: 29.4, JCR 1区,中科院1区,ESI高被引)[24] Changjun Han, Babicheva Rita, Jasper Chua Dong Qiu, Upadrasta Ramamurty, Shu Beng Tor, Chen-Nan Sun, Kun Zhou. Microstructure and mechanical properties of (TiB + TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders. Additive Manufacturing, 2020, 36: 101466. (IF: 11, JCR 1区, 中科院1区,ESI高被引)[25] Danlei Zhao, Changjun Han*, Jingjing Li, Jie Liu, Qingsong Wei*. In situ fabrication of a titanium-niobium alloy with tailored microstructures, enhanced mechanical properties and biocompatibility by using selective laser melting. Materials Science and Engineering: C, 2020, 111: 110784. (IF: 8.457,JCR 1区,中科院2区)[26] Lei Yang, Changjun Han*, Hongzhi Wu, Liang Hao, Qingsong Wei, Chunze Yan*, Yusheng Shi. Insights into unit cell size effect on mechanical responses and energy absorption capability of titanium graded porous structures manufactured by laser powder bed fusion. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 109: 103843. (IF: 3.9,JCR 2区,中科院2区)[27] Danlei Zhao, Changjun Han*, Yan Li, Jingjing Li, Kun Zhou, Qingsong Wei*, Jie Liu, Yusheng Shi. Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting. Journal of Alloys and Compounds, 2019, 804: 288-298. (IF: 6.2,JCR 1区,中科院1区)[28] Changjun Han, Yan Li, Qian Wang, Daosheng Cai, Qingsong Wei, Li Yang, Shifeng Wen, Yusheng Shi. Titanium/hydroxyapatite (Ti/HA) gradient materials with quasi-continuous ratios fabricated by SLM: Material interface and fracture toughness. Materials & Design, 2018, 141, 256-266. (IF: 8.4,JCR 1区,中科院1区)[29] Changjun Han, Yan Li, Qian Wang, Shifeng Wen, Qingsong Wei, Chunze Yan, Liang Hao, Jie Liu, Yusheng Shi. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80: 119-127. (IF: 3.9,JCR 2区,中科院2区)[30] Changjun Han, Yao Yao, Xian Cheng, Jiaxin Luo, Pu Luo, Qian Wang, Fang Yang, Qingsong Wei, Zhen Zhang. Electrophoretic Deposition of Gentamicin-loaded Silk Fibroin Coatings on 3D-printed Porous Cobalt-Chromium-Molybdenum Bone Substitutes to Prevent Orthopedic Implant Infections. Biomacromolecules, 2017, 18: 3376-3787. (IF: 6.5, JCR 1区,中科院1区)[31] Changjun Han, Qian Wang, Bo Song, Wei Li, Qingsong Wei, Shifeng Wen, Jie Liu, Yusheng Shi. Microstructure and property evolutions of titanium/nano-hydroxyapatite composites in-situ prepared by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71: 85-94. (IF: 3.9,JCR 2区,中科院2区)[32] Changjun Han, Chunze Yan, Shifeng Wen, Tian Xu, Shuai Li, Jie Liu, Qingsong Wei, Yusheng Shi. Effects of the unit cell topology on the compression properties of porous Co-Cr scaffolds fabricated via selective laser melting. Rapid Prototyping Journal, 2017, 23: 16-27. (IF: 3.9, JCR 2区,中科院3区)[33] 赵彦喆,董志,王迪,宋长辉,杨永强,韩昌骏*. 激光增材成形纯锌的微观组织及力学性能各向异性研究,中国激光,2024,51(4): 0402301.[34] 蔡子豪, 朱勇强, 韩昌骏*, 贺韶, 何烨, 邰志恒, TrofimovVyacheslav, 杨永强. 不同工艺策略对机器人增减材复合制造316L表面质量和力学性能研究[J]. 中国激光, 2023, 50(08): 0802021. (EI) (封面文章)[35] 王迪, 欧远辉, 陶振青, 韩昌骏*. 激光选区熔化高导电CuCrZr感应线圈及工艺调控[J].华中科技大学学报(自然科学版),2023, 51(4): 82-90. (EI)[36] 韩昌骏, 王再驰, 黄俊斐, 宋长辉, 王迪,杨永强. 激光选区熔化增材制造三维双V蜂窝机械超材料及其压缩力学响应[J].航空制造技术, 2022, 65(23/24):63-71. (中文核心) 出版专著和教材 1. Zhou Kun, Han Changjun. (2023). Metal Powder–based Additive Manufacturing. Wiley-VCH; 1st edition. (ISBN 978-3527346318)2. Wang Di, Yang Yongqiang, Han Changjun. (2023). Additive manufacturing of metal implants and surgical plates. In: Zhou Kun (eds) Additive Manufacturing: Materials, Functionalities and Applications, Springer, Cham. (Print ISBN 978-3-031-04720-6) 3. 王迪,韩昌骏,杨永强,张明康,刘林青著. 《激光金属增材制造技术》. 化学工业出版社,2024.2. (ISBN: 978-7-122-44206-2)4. 魏青松,周燕,朱文志,李伟,韩昌骏,滕庆,毛贻桅,文世峰著.《粉末床激光选区熔化成形典型金属材料的组织和性能》. 国防工业出版社,2021.10. 科研创新 1. 韩昌骏,董志,汪云徽,胡高令,杨永强,一种少层MXene 强化的可降解锌基复合材料及制备方法,ZL202310060681.X2. 韩昌骏,严冬,王智诚,戴卓均,舒锽,姚泽锦,陈杰童,基于FDM和DIW 的双喷头增材制造装置,ZL20232049119063. 韩昌骏,汪云徽,王再驰,李利,董志,胡高令,杨永强,一种面向增材制造技术的点阵仿生多孔结构设计与制造方法,CN 20231173149464. 韩昌骏,严佛宝,黎凯,袁道林,王迪,胡高令,董志,杨永强,基于强化学习的粉末床熔融增材制造缺陷检测及抑制方法,2023-9-12,CN202310641513.X5. 韩昌骏,徐申焘,董志,维亚切斯拉夫·特莫夫,邹于金,王迪,宋长辉,杨永强,基于机器学习的增材制造金属材料逆向设计方法,2023-9-1,CN202310651663.96. 韩昌骏,汪云徽,董志,胡高令,王迪,宋长辉,杨永强,一种面向激光选区熔化技术的薄壁曲面多孔零件设计方法,2023-5-5,CN202310060083.27. 韩昌骏,邹于金,黎凯,董志,胡高令,王迪,宋长辉,杨永强,一种双波长双激光粉末床熔融成形异质金属材料的方法,2023-4-18,CN202310060860.38. 韩昌骏,董志,汪云徽,胡高令,杨永强,一种用于粉末床增材制造的金属/MXene 复合粉体及制备方法,2023-4-18,CN202310058722.19. 韩昌骏,黄金淼,杨永强,王迪,宋长辉,肖云绵,蒋梦龙,黄坤,一种基于增材制造/高温自蔓延的层级多孔零件成形方法,2023-3-7, CN202211487702.810. 韩昌骏,严佛宝,杨永强,王迪,宋长辉,基于stacking的多能量场增材制造金属零件的力学性能预测方法,2022-9-20,CN202210720195.1 教学活动 承担本科生必修课程《机械设计基础》(国家精品课程)、《成型技术基础》(双语)、选修课程《3D打印技术与应用》《激光先进制造前沿》,研究生课程《论文写作与学术规范》《激光表面改性》 指导学生情况 指导博士生3名、硕士生10余名 我的团队 团队所在的杨永强教授课题组是国内较早开展激光增材制造(3D 打印)的单位之一,目前具有机械制造与设计、软件与控制工程、光学工程、材料科学与工程等多学科专业背景,具备从事多学科交叉研究课题的专业理论和技术经验。课题组团队依托国家金属材料近净成形工程技术研究中心、国家人体组织功能重建工程技术研究中心,课题组目前有教授2名,副教授3名,讲师3名,引进外专千人计划专家1名、博士、硕士研究生70余人。

杨永