教师主页移动版

主页 > 浙江省 > 浙江师范大学

万强

姓名 万强
性别
学校 浙江师范大学
部门 博士学位
学位 博士学位
学历 博士研究生毕业
职称 软件著作权666包写包过
联系方式 实用新型1875包写包过
邮箱 qiangwan@zjnu.edu.cn
   
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料

万强 32 性别 : 男 毕业院校 : 福州大学 学历 : 博士研究生毕业 学位 : 博士学位 在职信息 : 在岗 所在单位 : 化学与材料科学学院 入职时间 : 2023-02-13 办公地点 : 11幢202 联系方式 : qiangwan@zjnu.edu.cn Email : qiangwan@zjnu.edu.cn 访问量 : 0000003113 最后更新时间 : 2024.4.4 个人简介 个人简介:万强,男,1994年生于江西南昌市,理学博士,硕士生导师。2023年2月加入浙江师范大学化学与材料科学学院,STM-Raman界面电化学课题组。主要从事固体表界面物理、化学性质的理论模拟研究。已发表学术论文40篇,其中以第一作者(含共一)身份在Nat. Commun.、Chem、ACS Catal.、J. Catal.、J. Mater. Chem. A、Nanoscale等重要国际期刊发表论文10余篇,撰写“Current Developments in Photocatalysis and Photocatalytic Materials”英文专著(Elsevier)第30章节。Google scholar: https://scholar.google.com/citations?user=Om6aKfIAAAAJ&hl=en Web of Science: https://www.webofscience.com/wos/author/record/AAJ-3595-2020STM-Raman界面电化学课题组:组长:周小顺教授,博士生导师,国家“万人计划”青年拔尖人才,“双龙学者”特聘教授;其他成员:王亚浩副教授,硕士生导师。教育和工作经历:02/2023–至今浙江师范大学09/2016 –2022.12物理化学/理学博士,导师: 林森教授福州大学,化学学院,能源与环境光催化国家重点实验室12/2018 – 12/2019JR Specialist, PI: Prof. De-en Jiang加州大学河滨校区,化学09/2012 – 06/2016材料化学/理学学士,江西师范大学,化学化工学院研究兴趣:多相催化中的反应机理以及动态现象;催化剂理性设计及性能优化;基于数据驱动方法,构建催化剂综合性能描述符。主持科研项目:1. 浙江师范大学科研启动经费,2023.2  主持2. 国家自然科学基金青年项目,2024.1 主持3. 浙江师范大学校青年博士专项,2023.2 主持4. 浙江省自然科学基金探索项目,2024.1 主持发表的论文:[40] Zhang L#, Wan S#, Du C#, Wan Q#, Pham H, Zhao J, Ding X, Wei D, Zhao W, Li J, Zheng Y, Xie H, Zhang H, Chen M, Zhang K, Wang S, Lin J, Huang J, Lin S*, Wang Y, Datye A, Wang Y*, Xiong H*. Generating Active Metal/Oxide Reverse Interfaces through Coordinated Migration of Metal and Oxide Single Atoms [J]. Nat. Commun., 2024, 15: 1234.[39] Wei F, Ge B, Dong P, Wan Q*, Hu X, Lin S*. Uncovering the active sites of single-atom doped rutile oxides during methane activation by data-driven approach [J]. Sci. China Mater., 2024, 67: 1231.[38] Wan Q#, Guo H-Y#, Zhou Y-F, Jiang J-N, Chen W*, Zheng J-F, Shao Y, Wang Y-H*, Zhou X-S*. The regulation effect of coordination number on conductance of single-molecule junctions [J]. J. Mater. Chem. C, 2024, 12: 60-65.[37] Wan Q, Guo H, Lin S*. Corrugation-induced active sites on pristine graphene for H2 activation [J]. ACS Catal., 2022, 12: 14601-14608.[36] Li H#, Wan Q#, Du C#, Liu Q, Qi J, Ding X, Wang S, Wan S, Lin J, Tian C, Li L, Peng T, Zhao W, Zhang K-H, Huang J, Zhang X, Gu Q, Yang B, Guo H, Lin S*, Datye, AK*, Wang Y*, Xiong H*. Vapor-phase self-assembly for generating thermally stable single atom catalysts[J]. Chem, 2022, 8 (3): 731-748.[35] Li H-C#, Wan Q#, Du C, Zhao J, Li F, Zhang Y, Zheng Y, Chen M, Zhang K-H, Huang J, Fu G, Lin S*, Huang X*, Xiong H*. Layered Pd oxide on PdSn Nanowires for Boosting Direct H2O2 Synthesis [J].  Nat. Commun., 2022, 13 (1): 6072.[34] Chen Y#, Wan Q#, Cao L, Gao Z, Lin J*, Li L, Pan X, Lin S*, Wang X*, Zhang T. Facet-dependent electronic state of Pt single atoms anchoring on CeO2 nanocrystal for CO (preferential) oxidation [J]. J. Catal., 2022, 415: 174-185.[33] Wan Q#, Chen Y#, Zhou S, Lin J*, Lin S*. Selective hydrogenation of acetylene to ethylene on anatase TiO2 through first-principles studies[J]. J. Mater. Chem. A, 2021, 9(24): 14064-14073.[32] Wan Q, Fung V, Lin S, Wu Z, Jiang D-E*. Perovskite-supported Pt single atoms for methane activation[J]. J. Mater. Chem. A, 2020, 8(8): 4362-4368.[31] Wan Q, Wei F, Wang Y, Wang F, Zhou L, Lin S*, Xie D*, Guo H*. Single atom detachment from Cu clusters, and diffusion and trapping on CeO2 (111): Implications in Ostwald ripening and atomic redispersion[J]. Nanoscale, 2018, 10(37): 17893-17901. [30] Wan Q#, Li H#, Liu S, Zhang Z, Xiong H*, Lin S*. Investigation on the Reaction Mechanism of Methane Oxidation over MgAl2O4-supported Single-Atom Catalyst Prepared at High Temperature[J]. ChemCatChem, 2022, 14, e202200919.[29] Wan Q, Li J, Jiang R*, Lin S*. Construction of frustrated Lewis pairs on carbon nitride nanosheets for catalytic hydrogenation of acetylene[J]. Phys. Chem. Chem. Phys., 2021, 23(42): 24349-24356.[28] Wan Q, Wei F, Ma Z*, Anpo M, Lin S*. Novel Porous Boron Nitride Nanosheet with Carbon Doping: Potential Metal‐Free Photocatalyst for Visible‐Light‐Driven Overall Water Splitting[J]. Adv. Theory Simul., 2019, 2(4): 1800174. (Inside Back Cover) [27] Wan Q, Lin S*, Guo H*. Frustrated Lewis Pairs in Heterogeneous Catalysis: Theoretical Insights [J]. Molecules, 2022, 27 (12): 3734.[26] Luo Z, Wan Q, Yu Z, Lin S, Xie Z*, Wang X*. Photo-fluorination of nanodiamonds catalyzing oxidative dehydrogenation reaction of ethylbenzene[J]. Nat. Commun., 2021, 12(1): 1-8. [25] Xiong H*, Kunwar D, Jiang D, García-Vargas CE, Li H, Du C, Canning G, Pereira-Hernandez XI, Wan Q, Lin S, Purdy SC, Miller JT, Leung K, Chou SS, Brongersma HH, Veen RT, Huang J, Guo H*, Wang Y*, Datye AK*. Engineering catalyst supports to stabilize PdOx two-dimensional rafts for water-tolerant methane oxidation[J]. Nat. Catal., 2021, 4(10): 830-839.[24] Zhou Y#, Wei F#, Qi H#, Chai Y, Cao L, Lin J*, Wan Q, Liu X, Xing Y, Lin S*, Wang A*, Wang X*, Zhang T. Peripheral-nitrogen-mediated Ru1 center for highly efficient propane dehydrogenation [J]. Nat. Catal., 2022, 5(12): 1145–1156.[23] Chen H, Yang SZ, Yang Z*, Lin W, Xu H, Wan Q, Suo X, Wang T, Jiang D-E, Fu J*, Dai S*. Sinter-resistant nanoparticle catalysts achieved by 2D boron nitride-based strong metal–support interactions: A new twist on an old story[J]. ACS Cent. Sci., 2020, 6(9): 1617-1627.[22] Ge B, Wei F, Wan Q, Zhang H, Yuan P*, Lin S*, Peripheral Coordination-Dependent Descriptor for Selective Interactions between Near-Frontier Molecular Orbitals and Single-Atom Catalysts, Precis. Chem, 2023, 1, 7, 429–436.[21] Sun L, Xu J, Liu X, Qiao B, Li L, Ren Y, Wan Q, Lin J*, Lin S*, Wang X*, Guo H, Zhang T. High-Efficiency Water Gas Shift Reaction Catalysis on α-MoC Promoted by Single-Atom Ir Species[J]. ACS Catal., 2021, 11(10): 5942.[20] Feng Y, Zhou L, Wan Q, Lin S*, Guo H*. Selective hydrogenation of 1, 3-butadiene catalyzed by a single Pd atom anchored on graphene: the importance of dynamics[J]. Chem. Sci., 2018, 9(27): 5890-5896.[19] Qi J, Gao L, Wei F, Wan Q, Lin S*. Design of a high-performance electrocatalyst for N2 conversion to NH3 by trapping single metal atoms on stepped CeO2[J]. ACS Appl. Mater. Interfaces, 2019, 11(50): 47525-47534.[18] Wang S, Feng Y, Yu M, Wan Q, Lin S*. Confined catalysis in the g-C3N4/Pt (111) interface: feasible molecule intercalation, tunable molecule–metal interaction, and enhanced reaction activity of CO oxidation[J]. ACS Appl. Mater. Interfaces, 2017, 9(38): 33267-33273.[17] Li J, Sun L, Wan Q, Lin J*, Lin S*, Wang X*. α-MoC Supported Noble Metal Catalysts for Water–Gas Shift Reaction: Single-Atom Promoter or Single-Atom Player[J]. J. Phys. Chem. Lett.,2021, 12: 11415-11421. [16] Gao F, Wan Q, Yuan J, Lei R, Lin S*, Liu P*. Highly efficient and durable core-shell catalyst with dual functions: Tungsten nitride quantum dots encapsulated in ultra-thin graphene[J]. Appl. Catal., B, 2021, 299: 120692.[15] Wang C, Wan Q, Cheng J*, Lin S, Savateev A, Antonietti M, Wang X*. Efficient aerobic oxidation of alcohols to esters by acidified carbon nitride photocatalysts[J]. J. Catal., 2021, 393: 116-125.[14] Wang ZW, Wan Q, Shi YZ, Wang H, Kang YY, Zhu SY, Lin S*, Wu L*. Selective photocatalytic reduction CO2 to CH4 on ultrathin TiO2 nanosheet via coordination activation[J]. Appl. Catal., B, 2021, 288: 120000.[13] Ding X, Huang H, Wan Q, Guan X, Fang Y, Lin S, Chen D*, Xie Z*. Self-template synthesis of hollow Fe-doped CoP prisms with enhanced oxygen evolution reaction activity[J]. J. Energy Chem., 2021, 62: 415-422.[12] Riley C, De La Riva A, Zhou S, Wan Q, Peterson E, Artyushkova K, Farahani MD, Friedrich HB, Burkemper L, Atudorei NV, Lin S, Guo H, Datye AK*. Synthesis of nickel-doped ceria catalysts for selective acetylene hydrogenation[J]. ChemCatChem, 2019, 11(5), 1526.[11] Feng Y, Wan Q, Xiong H*, Zhou S, Chen X, Pereira Hernandez XI, Wang Y, Lin S*, Datye AK*, Guo H*. Correlating DFT calculations with CO oxidation reactivity on Ga-doped Pt/CeO2 single-atom catalysts[J]. J. Phys. Chem. C, 2018, 122(39): 22460-22468. [10] Xu J, Wan Q, Wang Z, Lin S*. The band structure engineering of fluorine-passivated graphdiyne nanoribbons via doping with BN pairs for overall photocatalytic water splitting[J]. Phys. Chem. Chem. Phys, 2020, 22(46): 26995-27001. [9] Wei F, Wan Q, Lin S, Guo H*. Origin of Confined Catalysis in Nanoscale Reactors between Two-Dimensional Covers and Metal Substrates: Mechanical or Electronic?[J]. J. Phys. Chem. C, 2020, 124(21): 11564-11573. [8] Xu J, Wan Q, Anpo M, Lin S*. Bandgap opening of graphdiyne monolayer via B, N-codoping for photocatalytic overall water splitting: design strategy from DFT studies[J]. J. Phys. Chem. C, 2020, 124(12): 6624-6633.[7] Zhou S*, Wan Q, Lin S*. Cu/O Frustrated Lewis Pairs on Cu Doped CeO2(111) for Acetylene Hydrogenation: A First-Principles Study. Catalysts, 2022, 12, 74.[6] Zhou S*, Wan Q, Lin S*, Guo H. Acetylene hydrogenation catalyzed by bare and Ni doped CeO2(110): The role of frustrated Lewis pairs. Phys. Chem. Chem. Phys., 2022. [5] Wang Z, Zhao J, Wan Q, Lin S*. Halogen-Driven Bandgap Opening in Graphdiyne for Overall Photocatalytic Water Splitting[J]. Chin. J. Chem. Phys., 2021, 34(6): 805-813.[4] Ge B, Wei F, Wan Q, Yuan P*, Lin S*. Design of Catalysts for Selective Hydrogenation of Acrylonitrile via Confining Single Metal Atoms within a C2N Framework[J]. J. Phys. Chem. C, 2022, 126, 24, 10053–10060.[3] Li J, Wan Q, Lin G*, Lin S*. Role of α-MoC(100) in Methanol Steam Reforming: A Mechanistic Study of DFT [J]. Chin. J. Chem. Phys., 2022, 35(4): 639-646.[2] Li J, Wan Q, Dong H*, Lin S*. Computational Study of CO2 Methanation over Two-dimensional Molybdenum Carbide Catalysts [J]. Int. J. Hydrogen Energy, 2022, 48, 64, 24826-24832.[1] Lian K, Wan Q, Jiang R*, Lin S*, Electrocatalytic Oxygen Reduction to Hydrogen Peroxide on Graphdiyne-Based Single-Atom Catalysts: First-Principles Studies, Catalysts, 2023, 13, 307. 专著章节Wan Q, Xu J, Lin S. Theoretical studies of two-dimensional photocatalyst materials[M]//Current Developments in Photocatalysis and Photocatalytic Materials. Elsevier, 2020: 491-510.

万强