杨启贵
姓名 | 杨启贵 |
性别 | 男 |
学校 | 华南理工大学 |
部门 | 华南理工大学数学学院 |
学位 | 教授 |
学历 | 教授 |
职称 | 教授 |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
更新日期:2023年3月28日 姓 名 杨启贵 性 别 男 出生年月 1965年8月 籍贯 重庆 民 族 土家族 政治面貌 中国共产党党员 最后学历 博士研究生 最后学位 理学博士 技术职称 教授 导师类别 博、硕导 行政职务 Email qgyang@scut.edu.cn 工作单位 华南理工大学数学学院 邮政编码 510640 通讯地址 广州市天河区五山路381号 单位电话 13662483386 个人简介 杨启贵教授,博士(后),华南理工大学二级教授,博士生导师。主要从事混沌机理、动力系统几何理论、混沌系统与随机系统复杂性、非线性电路及其应用、经济混沌动力系统等研究。讨论系统简单到何种程度仍然具有混沌复杂性,揭示混沌系统混沌机理与复杂动力学特征。在混沌动力系统复杂性及混沌机理、混沌与超混沌系统的构造、分岔与随机动力系统复杂性、矩阵微分系统振动理论及其相关应用中取得了一定成效。已招收博士后合作研究人员5人(已出站4人,在站1人),博士研究生23人(已获学位18人,在读5人),硕士研究生35人(已获学位或直接攻博29人,在读6人),其中3人博士学位论文获广东省优秀博士学位论文。1人硕士论文获广东省优秀硕士学位论文。 工作经历 1987.07–1992.08: 四川省秀山县宋农高级职业中学高中教师 1995.07–1999.08: 广西师范大学数学与计算机科学系教师、讲师,副教授 2002.09–2004.08: 清华大学数学科学系博士后、广西师范大学教授 2004.09–2004.11: 广西师范大学数学与计算机学院教师、教授 2004.12–2015.09: 华南理工大学数学科学学学院三级教授、博士生导师 2015.10–现 在: 华南理工大学数学学院二级教授、博士生导师 教育经历 1984.09–1987.07: 涪陵师范专科学校(现长江师范学院)数学系 1992.09–1995.07: 重庆大学系统工程与应用数学系硕士研究生并获硕士学位 1999.09–2002.06: 中山大学数学与计算科学学院博士研究生并获博士学位 获奖、荣誉称号 1. “微分系统轨道吸引与矩阵Homilton系统振动研究及其应用”,广西科技进步一等奖(第一,1/4), 2006. 2. 广西高校科技进步三等奖(独立), 1999年, 3. 广东省“千百十工程”第四批省级培养对象,2006年. 4. 第二届南粤科技创新优秀学术论文二等奖, 2011. 5. 广东省南粤优秀研究生一等奖和曾宪梓奖学金奖励, 2002 社会、学会及学术兼职 1.2010年-至今,广东省工业与应用数学会常务理事;2.2010年-至今,广州市工业与应用数学会副理事长;3.2017年-至今,中国电子学会电路与系统分会混沌与非线性电路专业委员会,副主任;4.2019年-至今,密码学会混沌保密通信专委会委员;5.2019年-至今,高等学校大学数学教学研究与发展中心学术委员会委员6.2019年-至今,广东省本科高校数学类专业教学指导委员会,副主任 研究领域 主要从事微分方程几何理论、混沌动力系统、随机动力系统及其相关领域的研究。研究领域包括平面动力系统的几何理论、混沌理论、微分系统振动理论、动力系统分支理论、随机动力系统随机分支与遍历性、经济混沌动力系统等,揭示混沌系统动力学特征,高维系统复杂性与无穷维混沌系统的混沌机理与严格证明等. 科研项目 1 高维动力系统复杂性与混沌机制研究, 国家自然科学基金面上项目,批准号:11671149,项目主持人.2 确定混沌与随机混沌系统复杂性研究, 国家自然科学基金面上项目,批准号:11271139,项目主持人. 3 混沌与超混沌系统复杂性的定性研究, 国家自然科学基金面上项目,批准号:10871074,项目主持人.4 矩阵微分系统与非线性混沌系统的复杂性研究, 国家自然科学基金面上项目,批准号:10461002,项目主持人.5 用于心肌缺血/猝死早期检测的心电动力学图的新型装置, 国家自然科学基金重大科研仪器研制项目,批准号:61527811,项目核心成员.6 分数Brown运动驱动的随机微分方程的随机吸引子、遍历性与随机混沌的研究, 国家自然科学基金面上项目,批准号:11871074,项目核心成员.7 二阶常微分方程定性理论及应用, 国家自然科学基金面上项目,批准号:10871074,项目核心成员.8 分支、极限环、孤立子的计算机处理,国家自然科学基金面上项目,批准号:10071097,项目核心成员.9 智能学习与视觉感知计算,广东省自然科学基金研究团队项目,批准号:2017A030312006,项目负责人之一.10 确定混沌与随机混沌系统动力学研究, 广东省自然科学基金面上项目,批准号:2014A030313256,项目主持人. 11 基于超混沌理论的移动通信信息安全研究, 广东省科技攻关项目,批准号:10871074,校方项目主持人.12 微分系统振动与混沌复杂性的研究, 广东省自然科学基金面上项目,批准号:05300162,项目主持人.13 矩阵微分系统的振动性与非线性混沌系统的研究, 中国博士后科学基金项目,批准号:2003034161,项目主持人.14 吸引子结构及其在种群均衡中应用, 广西自然科学基金面上项目,批准号:桂科基0236012,项目主持人.15 非线性微分系统轨线定性研究与应用, 广西自然科学基金面上项目,批准号:桂科基9811021,项目主持人. 发表论文 至今为止在国内外重要学术刊物发表论文127篇,包括在国际重要学术刊物J. Differential Equations、Chaos、Proc. Roy. Soc. Edinburgh Sect. A、 Int J Bifur Chaos、Nonlinear Dynamics等30多种刊物发表2篇Tutorial-Review论文和112篇学术论文,在国内重要学术刊物数学学报、应用数学学报、Chinese Physics B等30多种学术刊物发表学术论文124篇,其中被SCI收录112篇,SCI正面他引近1600余次。A 严格证明混沌论文 这部分论文主要是高维复杂性与无穷维系统的混沌机理的严格证明,证明简单n维线性系统在脉冲控制下混沌的存在性;证明3维及4维分片不连续线性系统的混沌存在性;证明n维耦合离散Lotak-Vertorra模型的混沌存在性;证明无穷维线性算子具有分布混沌与分布n-混沌;证明简单线性双曲偏微分方程的时空混沌复杂性,具体论文如下: 1. Qigui Yang*,Qiaomin Xiang. Chaotic oscillations of linear hyperbolic PDE with variable coefficients and implicit boundary conditions, Discrete Continuous Dynamical Systems-S, doi: 10.3934/dcdss.2020335. 2. Qiaomin Xiang, Qigui Yang*, Nonisotropic chaotic vibrations of a 2D hyperbolic PDE,Chaos. 30:2(2020), 023127(16 pages). 3. Qiaomin Xiang, Qigui Yang*. Chaotic oscillations of linear hyperbolic PDE with general nonlinear boundary condition,J. Math. Anal. Appl., 472: 1(2019), 94- 111. 4. Qigui Yang*, Qiaomin Xiang. Existence of chaotic oscillations in second-order linear hyperbolic PDEs with implicit boundary conditions, J. Math. Anal. Appl., 457(2018), 751-775. 5. Qiaomin Xiang, Qigui Yang*. Nonisotropic chaotic oscillations of the wave equation due to the interaction of mixing transport term and boundary conditions. J. Math. Anal. Appl., 462 (2018) 730-746. 6. Kai Lu, Qigui Yang*, Guanrong Chen. Singular cycles and chaos in a new class of 3D three-zone piecewise affine systems. Chaos, 29(2019), 043124(12 pages). 7. Qigui Yang*, Kai Lu. Homoclinic orbits and an invariant chaotic set in a new 4D piecewise affine system,Nonlinear Dynamics, 93: 4(2018), 2445-2459. 8. Kai Lu, Qigui Yang*,Wenjing Xu. Heteroclinic cycles and chaos in a class of 3D three-zone piecewise affine systems, J Math Anal Appl, 478: 1(2019), 58-81. 9. Zhongbin Yin, Qigui Yang*. Distributionally n-chaotic dynamics for linear operators, Revista Matemática Complutense, 31:1(2018), 111-129 10. Zongbin Yin, Qigui Yang*, Distributionally n-scrambled set for weighted shift operators, J. Dyn. Control Syst., 23:4(2017), 693-708. 11. Zongbin Yin, Qigui Yang*, Generic distributional chaos and principal measure in linear dynamics, Polon. Math Ann, 118: 1(2016), 71-94 12. Zongbin Yin, Qigui Yang*, Distributionally scrambled set for an annihilation operator, Inter. J. Bifur. Chaos, 25: 13(2015), 1550178 (13 pages). 13. Qigui Yang*, Guirong Jiang, Tianshou Zhou. Chaotification of linear implusive differential systems with applications. Int J Bifur Chaos, 22 :12(2012), 1250297 (12pages). 14. Guirong Jiang, Qigui Yang*, Complex dynamics of a linear Hamiltonian system under impulsive control, Int J Bifur Chaos, 22 :3(2012), 1250076 (16pages). 15. Guirong Jiang, Qigui Yang*, Complex dynamics in a linear impulse system, Chaos, Solitons and Fractals, 41 (2009) 2341-2353. 16. Guirong Jiang, Bugong Xu, Qigui Yang*, Periodic solution and bifurcation of a linear impulsive system, Chinese Physics B, 18: 12(2009), 4123-4128. 17. Tianshu Zhou, Chen Guanrong, Qigui Yang, A simple time-delayed feedback anticontrol make riogorous, Chaos, 14:3(2004), 16-23.B 发现新混沌或超混沌系统论文 发现系列有限维新混沌或超混沌系统、隐藏混沌或超混沌系统,主要包括一系列的3维统一Lorenz型混沌系统等,发现一类被称为Yang混沌系统和有稳定平衡点的3维简单混沌系统,引领一系列的后续混沌系统研究;发现新的n维(n=4, 5, 6, 7)恰有n-2个正Lyapunov指数的超混沌系统;发现多类具有无穷多平衡点或无平衡点的4维或5维超混沌系统. 1. Qigui Yang*, Xinmei Qiao. Constructing a new 3D chaotic system with any number of equilibria, Inter. J. Bifur. Chaos, 29:5(2019), 1950060 (23 pages). 2. Qigui Yang*, Linbing Yang, Bin Ou. Hidden hyperchaotic attractors in a new 5D system based on chaotic system with two stable node-foci, Inter. J. Bifur. Chaos, 29:7(2019), 1950092 (21 Pages). 3. Ting Yang, Qigui Yang*. A 3D autonomous system with infinitely many chaotic attractors, Inter. J. Bifur. Chaos, 29:12(2019), 1950166 (19 Pages). 4. Qigui Yang*, Daoyu Zhu, Lingbin Yang. A new 7D hyperchaotic system with five positive Lyapunov exponents coined. Inter. J. Bifur. Chaos 28: 5(2018), 1850057 (20 pages). 5. Qigui Yang*, Meili Bai. A new 5D hyperchaotic system based on modified generalized Lorenz system. Nonlinear Dynamics 88:1(2017) 189–221. 6. Qigui Yang*, Waleed Mahgoub Osman, Chuntao Chen, A new 6D hyperchaotic system with four positive Lyapunov exponents coined, Inter. J. Bifur. Chaos 25: 4(2015), 1550060 (18 pages) 7. Yuming Chen, Qigui Yang*. A new Lorenz-type hyperchaotic system with a curve of equilibria, Mathematics and Computer in Simulation, 112(2015), 40-55. 8. Qigui Yang*,Chuntao Chen, A 5D hyperchaotic system with three positive Lyapunov exponents coined, Inter. J. Bifur. Chaos, 23: 6( 2013), 1350109 (24 pages). 9. Qigui Yang*, Zhouchao Wei, Chen Guanrong, An unusual 3D autonomous quadratic chaotic sysytem with two stable node-foci, Int J Bifur Chaos, 20: 4(2010), 1061-1083 10. Liu Yongjian, Qigui Yang, Guoping Peng, A hyperchaotic system from the Rabinovich system, J Comput Appl Math 234 (2010) 101-113. 11. Qigui Yang*, Zhang Kangming, Guanrong Chen, Hyperchaotic attractors from a linearly controlled Lorenz system, Nonlinear Analysis: Real World Applications, 10: 3(2009), 1601 -1617 (SCI). 12. Qigui Yang*, Zhang Kangming,Guanrong Chen, A modified generalized Lorenz-type system and its canonical form, Int J Bifur Chaos, 19: 6(2009), 1931-1949. 13. Qigui Yang*, Yongjian Liu, A hyperchaotic system from a chaotic system with one saddle and two stable node-foci, J Math Anal Appl, 360: 1(2009), 293-306 14. Kuifei Huang, Qigui Yang*, Stability and Hopf bifurcation analysis of a new system, Chaos, Solitons and Fractals, 39 (2009) 567-578. 15. Qigui Yang*, Guanrong Chen, A chaotic system with one saddle and two stable node-foci, Int J Bifur Chaos, 18:5(2008), 1393-1414. 16. Qigui Yang*, Guanrong Chen, Tianshou Zhou, The unified Lorenz-type system and its canonical form, Int J Bifur Chaos, 16:10(2006) , 2855-2871.C 混沌动力系统复杂动力学论文 深入研究混沌动力系统与离散动力系统稳定性、分支与混沌等复杂动力学, 获得统一Lorenz系统的一类不变代数曲面存在机理,分数微积分与分数微分方程的概周期性、概自守性等动力学性质. 1. Qigui Yang*, Ting Yang. Complex dynamics in a generalized Langford system, Nonlinear Dynamics, 91: 4(2018), 2241-2270. 2. Liguo Yuan, Qigui Yang. Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system, Appl Math Modell, 39: 8(2015), 2345-2362. 3. Qigui Yang*,Yuming Chen, Complex dynamics of unified Lorenz-type systems, Inter. J. Bifur. Chaos 24: 4(2014),1450055 (30 pages) 4. Yuming Chen, Qigui Yang*. Dynamics of a hyperchaotic Lorenz-type system, Nonlinear Dynamics, 77: 3(2014), 569-581. 5. Jianghong Bao, Qigui Yang, Bifurcation analysis of the generalized stretch-twist-fold flow, Apll. Math. Comput 229(2014), 16-26. 6. Jianghong Bao, Qigui Yang, Darboux integrability of the stretch-twist-fold flow, Nonlinear Dynamics, 76: 1(2014), 797-807. 7. Yuming Chen, Qigui Yang*, The nonequivalence and dimension formula for attractors of Lorenz-type systems, Inter. J. Bifur. Chaos, 23:12(2013) 1350200 (12pages) 8. LiguoYuan, Qigui Yang, Caibin Zeng. Chaos detection and parameter identification in fractional-order chaotic systems with delay. Nonlinear Dynamics 73(2013): 439–448 9. Li-Guo Yuan, Qi-Gui Yang*, Parameter identification and synchronization of fractional-order chaotic systems, Commun Nonlinear Sci Numer Simulat 17 (2012) 305–316. 10. Junfei Cao, Qigui Yang*, Zaitang Huang, Existence of anti-periodic mild solutions for a class of semilinear fractional differential equations, Commun Nonlinear Sci Numer Simulat 17 (2012) 277–283 11. Wei Zhouchao; Yang Qigui. Dynamical analysis of the generalized Sprott C system with only two stable equilibria. Nonlinear Dynamics, 68: 4(2012), 543-554. 12. Bao Jianghong; Yang Qigui. Period of the discrete Arnold cat map and general cat map,Nonlinear Dynamics, 70:2(2012), 1365-1375. 13. Junfei Cao, Qigui Yang*, Zai-Tang Huang. Optimal mild solutions and weighted pseudo-almost periodic classical solutions of fractional integro-differential equations, Nonlinear Analysis: Theory, Method and Applications, 74: 1(2011), 224-234. 14.Zhouchao Wei, Qigui Yang, Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria, Nonlinear Analysis: Real World Applications, 12: 1(2011), 106-118 15. Jianghong Bao, Qigui Yang, A new method to find homoclinic and heteroclinic orbits, Appl. Math. Comput., 217(2011), 6526-6540. 16. Caibin Zeng, Qigui Yang, JW Wang, Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci, Nonlinear Dynamics, 65: 4 (2011), 457-466. 17 Yongjian Liu, Qigui Yang, Dynamics of the Lu system on the invariant algebraic surface and at infinity, Int J Bifur Chaos, 21:9(2011), 2559-2582 18. Zai-Tang Huang, Qigui Yang, Exponential stability of impulsive high-order cellular neural networks with time-varying delays, Nonlinear Analysis: Real World Applications, 11(2010), 592-600. 19. Yongjian Liu, Qigui Yang*, Dynamics of a new Lorenz-like chaotic system, Nonlinear Analysis: Real World Applications, 11 (2010) 2563–2572. 20. Qigui Yang*, Caibin Zeng, Chaos in fractional conjugate Lorenz system and its scaling attractors, Commun Nonlinear Sci Numer Simulat 15 (2010) 4041–4051. 21. Caibin Zeng, Qigui Yang, A fractional order HIV internal viral dynamics model, Computer Modeling in Engineering & Sciences, 59: 1(2010), 65-78 22. Zhouchao Wei, Qigui Yang*, Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci, Appl Math Comput., 217 (2010) 422-429 23. Jianghong Bao, Qigui Yang, Complex dynamics in the stretch-twist-fold flow, Nonlinear Dynamics, 61(2010), 773-781. 24. Zhang Kangming, Qigui Yang*, Hopf bifurcation analysis in a 4D-hyperchaotic system, J. System Sci. and Complexity, 23: 4(2010), 748-758. 25. Guirong Jiang, Qigui Yang, Periodic solutions and bifurcation in an SIS epidemic model with birth pulses, Math Comput Modell, 50 (2009) 498—508 26. Guirong Jiang, Qigui Yang, Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vaccination, Appl. Math. Comput., 215: 3(2009), 1035-1046. 27. Zhouchao Wei, Qigui Yang*, Controlling the diffusionless Lorenz equations with periodic parametric perturbation, Computers Math. Appl,, 58(2009), 1979-1987. 28. Zai-Tang Huang, Qigui Yang*, Xiao-shu Luo, Exponential stability of impulsive neural networks with time-varying delays, Chaos, Solitons and Fractals, 35 (2008) 770-780. 29. Guirong Jiang, Qigui Yang*, Periodic solution and bifurcation of a linear impulsive system, Chinese Physics B, 17: 11(2008), 4123-4128. 30. Zai-Tang Huang, Xiao-Shu Luo, Qigui Yang, Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse, Chaos, Solitons and Fractals, 34: 3(2007), 878-885. 31. Qigui Yang*, Guanrong Chen, Kuifei Huang, Chaotic attractors of the conjugate Lorenz-type system, Int J Bifur Chaos, 17:11(2007), 3929-3949. 32. Tianshu Zhou, Chen Guanrong, Qigui Yang, Constructing a new chaotic system based on Silnikov criterion, Chaos, Solitons and Fractals, 19:4(2004), 985-993.D 随机动力系统复杂动力学论文 随机动力系统随机分支与遍历性,包括非马氏随机系统的随机分支、分数Brown 运动驱动的Lorenz系统遍历性、Levy过程驱动的微分系统的Lyapnunov指数与遍历性;随机动力系统概周期与概自守等复杂性,包括Brown 运动及分数Brown 运动驱动的随机动力系统的概周期性、概自守性,G-Brown 运动驱动的随机动力系统的概周期性、概自守性等. 1.Caibin Zeng, Xiaofang Lin, Jianhua Huang, Qigui Yang*. Pathwise solution to rough stochastic lattice dynamical system driven by fractional noise, Commucations on Pure and Applied Analysis. 19 : 2(2020), 811-834. 2. Qigui Yang*, Guangjie Li, Exponential stability of theta-method for stochastic differential equations in the G-framework, J Comput Appl Math, 350 (2019), 195-210. 3. Yongchang Wei, Qigui Yang*, Guangjie Li. Dynamics of the stochastically perturbed Heroin epidemic model under non-degenerate noises, Physica A 526 (2019), 120914-1-10. 4. Qigui Yang*, Ping Zhu. Doubly-weighted pseudo almost automorphic solutions for nonlinear stochastic differential equations driven by Levy noise, Stochastics, 90:5(2018), 701-719. 5. Yongchang Wei, Qigui Yang*. Dynamics of the stochastic low concentration trimolecular oscillatory chemical system with jumps, Commun Nonlinear Sci Numer Simulat,59 (2018), 396-408. 6. Guangjie Li, Qigui Yang*, Yongchang Wei. Dynamics of stochastic heroin epidemic model with Levy jumps, J Appl Anal Computation, 8: 3(2018), 998-1010. 7. Qigui Yang*, Ping Zhu. Stepanov-like doubly weighted pseudo almost automorphic processes and its application to Sobolev-type stochastic differential equations driven by G-Brownian motion, Mathematical Methods in the Applied Sciences, 40:18(2017), 6602-6622. 8. C. Zeng, Q. Yang*, Y. Chen,Bifurcation dynamics of the tempered fractional Langevin equation, Chaos. 26: 8(2016):084310(8 pages). 9. C. Zeng, Q. Yang*, Dynamics of the stochastic Lorenz chaotic system with long memory effects,Chaos. 25:12(2015):043120(5 pages). 10. Q. Yang*, C. Zeng, C. Wang, Fractional noise destroys or induces a stochastic bifurcation, Chaos. 23(2013):043120 (5 pages). 11. C. Zeng, Y. Chen, Q. Yang, Almost sure and moment stability properties of fractional order Black-Scholes model, Fra. Calc. Appl. Anal. 2013, 16(2): 317-331 12. Junfei Cao, Qigui Yang*, Zaitang Huang, On almost periodic mild solutions for stochastic functional differential equations, Nonlinear Analysis Series B: Real World Applications, 13 (2012) 275-286. 13. Zeng Caibin; Chen Yangquan; Yang Qigui. The fBm-driven Ornstein-Uhlenbeck process: Probability density function and anomalous diffusion. Fra. Calc. Appl. Anal., 15: 3(2012), 479-492. 14. Zai-Tang Huang, Qigui Yang*, A stochastic model for interactions of hot gases with cloud droplets and raindrops, Nonlinear Analysis: Real World Applications, 12: 1(2011), 203-214. 15. Zai-Tang Huang, Qigui Yang*, Cao Junfei. Stochastic stability and bifurcation analysis on Hopfield neural networks with noise, Expert Systems With Applications, 38 (2011) 10437-10445. 16. Junfei Cao, Qigui Yang*, Zaitang Huang, Existence and exponential stability of almost automorphic mild solutions for stochastic functional differential equations, Stochastics, 83(2011), 259-275. 17. Zaitang Huang, Qigui Yang*, Junfei Cao, Stochastic stability and bifurcation for the chronic state in Marchuk’s model with noise, Appl. Math. Modell. 35 (2011) 5842–5855. 18. Junfei Cao, Qigui Yang*, Zaitang Huang, Qing Liu, Asymptotically almost periodic solutions of stochastic functional differential equations, Appl. Math. Comput. 218 (2011) 1499-1511. 19. Zaitang Huang, Qigui Yang*, Junfei Cao, The stochastic stability and bifurcation behavior of Internet congestion control model, Math. Comput Modell., 54: 9-10 (2011), 1954-1965. 20. Zai-Tang Huang, Qigui Yang*, Existence and exponential stability of almost periodic solution for stochastic cellular neural networks with delay, Chaos, Solitons and Fractals 49(2009), 773-780.E 矩阵微分系统振动理论论文 建立了系列矩阵微分系统的振动理论,尤其是自共轭线性矩阵 Hamilton系统单调泛函与区间振动理论等. 1. Qigui Yang*, On the oscillation of certain nonlinear neutral partial differential equations, Applied Mathematics Letters, 20 (2007), 900-907. 2. Qigui Yang*, S. S. Cheng, Oscillation theorems for certain even order neutral differential equations, Archivum Mathematicum (Brno), 43: 2(2007), 105-122. 3. Qigui Yang*, Yun Tang, Interval oscillation criteria for self-adjoin matrix Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A, 135: 5( 2005), 1085-1108. 4. Qigui Yang*, Oscillation theorems of second order linear matrix of solutions differential systems with damping, Acta Math. Sncia (ES), 21: 1(2005), 17-30. 5. Qigui Yang*, S. S. Cheng, Kamenev-type oscillation criteria for second order matrix differential systems with damping, Ann. Polon. Math., 85:2 (2005), 145-152. 6. Qigui Yang*, Oscillation of self-adjoint linear matrix Hamiltonian systems, J. Math. Anal. Appl., 296: 1(2004), 110—130. 7. Qigui Yang*, Yun Tang, Oscillation theorems for self-adjoint matrix Hamiltonian systems involving general means, J. Math. Anal. Appl., 295(2004), 355-377. 8. Qi-Rui Wang, Qi-Gui Yang, ,Interval criteria for oscillation of second-orderhalf-linear differential equations, J. Math. Anal. Appl., 291:1(2004), 224-236. 9. Qigui Yang*, Yun Tang, Oscillation of even order nonlinear functional differential equations with damping, Acta Math. Hungar., 102: 3(2004), 205-220. 10. Qigui Yang*, R. Mathsen, Interval oscillation for second order delay differential equations, Rocky Mountain J. Math., 34: 4(2004), 1539-1563. 11. Qigui Yang*, Oscillation of solutions of a class of nonlinear neutral parlial differential equations, Indian J. Pure Appl. Math., 35:1(2004), 3-22. 12. Qigui Yang*, R. Mathsen, Siming Zhu, Oscillation theorems for self-adjoint matrix Homiltonian systems, J. Differential Equations, 191(2003), 306--329. 13. Qigui Yang*, S. S. Cheng, On the oscillation of self-adjoint matrix Hamiltonian systems, Proc. Edinburgh Math. Soc., 46(2003), 609—625. 14. Qigui Yang*, Yun Tang, Oscillation theorems for certain second order self-adjoin matrix differential systems, J. Math. Anal. Appl., 288:2(2003), 565-585. 15. Qigui Yang*, Lijun Yang, Siming Zhu, Interval criteria for oscillation of second order nonlinear neutral differential equations, Computers Math. Appl, 46: 5-6(2003), 903-918. 16. Qigui Yang*, Interval oscillation criteria for a forced second order nonlinear ordinary differential equations with oscillatory potential, Appl. Math. Comput., 135(2003), 49-64. 17. Qigui Yang*, S. S. Cheng, Oscillation for second order half-linear differential equations with damping, Georgian Math. J., 10: 4(2003), 785-797. 18. Qigui Yang*, Interval oscillation criteria of second order self-dajoint matrix differential systems with damping, Ann. Polon. Math., LXXIX(2002), 185-198. 出版专著和教材 1. 刘正荣,杨启贵,刘深泉,洪毅. 数学分析(上),科学出版社,2012.8.2. 刘正荣,杨启贵,刘深泉,洪毅. 数学分析(下),科学出版社,2012.8. 教学活动 主讲课程 本科生:数学分析(一、二、三)、常微分方程、复变函数、高等数学、数理方程、数学模型. 硕士生:动力系统引论、分支与混沌引论、微分方程定性理论、动力系统稳定性与分支理论. 博士生:非线性动力系统、随机动力系统. 指导学生情况 本人已有合作研究出站博士后4名,培养毕业博士研究生18名(其中2名留学生)、毕业硕士研究生29名。目前在站博士后1名,在读博士生5名、硕士生6名。在毕业的研究生或博士后中,高校工作的已成长博导4人、中层领导岗位4人,教授5人、副教授15人,另有在华为、上海平安保险、通信、外企等工作多人. |