冀腾宇
姓名 | 冀腾宇 |
教师编号 | 4899 |
性别 | 男 |
学校 | 西北工业大学 |
部门 | 数学与统计学院 |
学位 | 理学博士学位 |
学历 | 博士研究生毕业 |
职称 | 副高 |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
个人经历 personal experience 工作经历 教育经历 2024.01 - 至今:西北工业大学,数学与统计学院,副教授2018.07 - 2023.12:西北工业大学,数学与统计学院,讲师2021.05 - 2022.02:新加坡国立大学,数学系,访问学者2016.02 - 2017.01:慕尼黑工业大学, Signal Processing in Earth Observation (SiPEO), DE, 访问学者 2014.09 - 2018.06:电子科技大学,数学科学学院,博士2012.09 - 2014.07:电子科技大学,数学科学学院,硕士2008.09 - 2012.06:电子科技大学,数学科学学院,学士 教育教学荣誉获奖 Awards Information 陕西省工业与应用数学学会第六届青年优秀论文三等奖中国工业与应用数学学会第16届年会优秀学生论文奖 荣誉获奖科学研究 Scientific Research 1.遥感图像去云的张量低秩优化模型和求解算法研究,国家自然科学基金青年项目(12001432),2021.01-2023.12,结题,主持2.基于低秩张量优化的高维图像复原问题研究,中央高校基本科研业务费(31020180QD126),2018.07 - 2021.06,结题,主持3.高维图像处理问题的数学建模与算法研究,中央高校基本科研业务费(学生项目),2015.10 - 2016.10,结题,主持4.高光谱图像复原问题的张量优化模型与高性能算法研究,国家自然科学基金面上项目,2019.01 - 2022.12,结题,参与5.压缩感知中图像重建的稀疏优化模型与高性能算法研究,国家自然科学基金面上项目(61772003),2018.01 - 2021.12,结题,参与6.高光谱图像光谱解混问题的变分模型和高性能算法研究,国家自然科学基金青年项目(61402082),2015.01 - 2017.12,结题,参与 科学研究学术成果 Academic Achievements 1. Teng-Yu Ji, Delin Chu, Xi-Le Zhao, Danfeng Hong, A unified framework of cloud detection and removal based on low-rank and group sparse regularizations for multitemporal multispectral images, IEEE Transactions on Geoscience and Remote Sensing, 60, 20222. Teng-Yu Ji, Xi-Le Zhao, Dong-Lin Sun, Low-rank tensor completion method for implicitly low-rank visual data, IEEE Signal Processing Letters, 29: 1162-1166, 20223. Teng-Yu Ji, Naoto Yokoya, Xiao Xiang Zhu, and Ting-Zhu Huang. Nonlocal tensor completion for multitemporal remotely sensed images' inpainting, IEEE Transactions on Geoscience and Remote Sensing, 56(6): 3047-3061, 2018.4. Teng-Yu Ji, Ting-Zhu Huang, Xi-Le Zhao, Tian-Hui Ma, and Liang-Jian Deng. A non-convex tensor rank approximation for tensor completion, Applied Mathematical Modelling, 48: 410-422, 2017.5. Teng-Yu Ji, Ting-Zhu Huang, Xi-Le Zhao, Tian-Hui Ma, and Gang Liu. Tensor completion using total variation and low-rank matrix factorization, Information Sciences, 326: 243-257, 2016.6. Xuanqi Wang, Teng-Yu Ji*, NSTMR: Super-Resolution of Sentinel-2 Images Using Nonlocal Non-convex Surrogate of Tensor Multi-Rank, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 5694-5706, 20217. Jie Lin, Ting-Zhu Huang, Xi-Le Zhao, Teng-Yu Ji, Qibin Zhao. Tensor Robust Kernel PCA for Multidimensional Data, IEEE Transactions on Neural Networks and Learning Systems, 20248. Ben-Zheng Li, Xi-Le Zhao, Xiongjun Zhang, Teng-Yu Ji, Xinyu Chen, Michael K Ng, A learnable group-tube transform induced tensor nuclear norm and its application for tensor completion, SIAM Journal on Imaging Sciences, 16(3):1370-1397, 20239. Jian Kang, Tengyu Ji, Zhe Zhang, Ruben Fernandez-Beltran, SAR time series despeckling via nonlocal matrix decomposition in logarithm domain, Signal Processing, 209, 202310. Zhanyu Zhu, Jian Kang, Tengyu Ji, Zhe Zhang, Ruben Fernandez-Beltran, SAR time-series despeckling via nonlocal total variation regularized robust PCA, IEEE Geoscience and Remote Sensing Letters, 19, 202211. Xin Li, Ting-Zhu Huang, Xi-Le Zhao, Teng-Yu Ji, Yu-Bang Zheng, Liang-Jian Deng, Adaptive total variation and second-order total variation-based model for low-rank tensor completion, Numerical Algorithms, 86(1): 1-24, 202112. Yu-Bang Zheng, Ting-Zhu Huang, Xi-Le Zhao, Tai-Xiang Jiang, Teng-Yu Ji, Tian-Hui Ma, Tensor N-tubal rank and its convex relaxation for low-rank tensor recovery, Information Sciences, 532: 170-189, 202013. Jing-Hua Yang, Xi-Le Zhao, Teng-Yu Ji, Tian-Hui Ma, Ting-Zhu Huang. Low-rank tensor train for tensor robust principal component analysis. Applied Mathematics and Computation. 367: 124783, 2020.14. Yugang Wang, Ting-Zhu Huang, Xi-Le Zhao, Liang-Jian Deng, and Teng-Yu Ji. A convex single image dehazing model via sparse dark channel prior, Applied Mathematics Computation, 375: 125085, 2020.15. Wen-Hao Xu, Xi-Le Zhao*, Teng-Yu Ji*, Jia-Qing Miao, Tian-Hui Ma, Si Wang, and Ting-Zhu Huang, Tensor Completion Using Nonconvex Low Rank Approximation, Signal Processing: Image Communication, 73: 62-69, 2019.16. Yu-Bang Zheng, Ting-Zhu Huang, Teng-Yu Ji, Xi-Le Zhao, Tai-Xiang Jiang, and Tian-Hui Ma, Low-Rank Tensor Completion via Smooth Matrix Factorization, Applied Mathematical Modelling, 70: 677-695, 2019.17. Xiao-Tong Li, Xi-Le Zhao, Tai-Xiang Jiang, Teng-Yu Ji, Ting-Zhu Huang. Low-rank tensor completion via combined non-local self-similarity and low-rank regularization. Neurocomputing, 367: 1-12, 2019.18. Yu-Bang Zheng, Ting-Zhu Huang, Xi-Le Zhao, Tai-Xiang Jiang, Tian-Hui Ma, Teng-Yu Ji. Mixed noise removal in hyperspectral image via low-fibered-rank regularization. IEEE Transactions on Geoscience and Remote Sensing. 58(1): 734-749, 2019.19. Meng Ding, Ting-Zhu Huang, Teng-Yu Ji, Xi-Le Zhao, Jing-Hua Yang. Low-rank tensor completion using matrix factorization based on tensor train rank and total variation. Journal of Scientific Computing. 81(2): 941-964, 2019.20. Xi-Le Zhao, Xin Nie, Yu-Bang Zheng, Teng-Yu Ji, Ting-Zhu Huang. Low-rank tensor completion via tensor nuclear norm with hybrid smooth regularization. IEEE Access, 7: 131888-131901, 2019.21. Tai-Xiang Jiang, Ting-Zhu Huang, Xi-Le Zhao, Teng-Yu Ji, and Liang-Jian Deng. Matrix factorization for low-rank tensor completion using framelet prior. Information Sciences, 436-437: 403-417, 2018.22. Teng-Yu Ji, Ting-Zhu Huang, Xi-Le Zhao, and Dong-Lin Sun. A new surrogate for tensor multirank and applications in image and video completion, IEEE International Conference on Progress in Informatics and Computing (PIC), 2017. 学术成果综合介绍 |