刘文城
姓名 | 刘文城 |
教师编号 | 4283 |
性别 | 男 |
学校 | 西北工业大学 |
部门 | 民航学院 |
学位 | 哲学博士学位 |
学历 | 博士研究生毕业 |
职称 | 副高 |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
综合介绍 General Introduction 刘文城,西北工业大学副教授、硕士生导师,姑苏创新青年领军人才、江苏省双创博士人才。主要从事先进航空轻合金、复合材料复合受载静动态力学,多尺度力学理论,先进力学测试技术与装备的研究。目前主要在研科研方向包括:(1)热塑性复合材料双轴动静态力学性能测试技术及其抗冲击性能研究;(2)热塑性复合材料双轴载荷下的疲劳损伤机理研究;(3)热固性复合材料双轴疲劳、蠕变载荷下的层间强度研究;(4)增材钛合金双轴载荷下的断裂极限与强度准则研究;(5)第三代1.2GPa级延性淬火钢在双轴动态载荷下的TRIP效应研究。相关科研方向在Composites Science and Technology, Intetnational Journal of Plasticity, Intetnational Journal of Mechanical Science, International Journal of Fatigue, International Journal of Solids and Structures,European Journal of Mechanics - A/Solids 等复合材料、固体力学权威期刊发表SCI论文20余篇,主持国家自然科学基金等纵向科研项目4项。2024年拟招收研究生2~3名,欢迎航空、力学、材料专业相关的同学加入我们实验室。实验室目前具备世界领先的双轴动静态力学测试装备、高速测量设备和先进光学测试仪器,充足的课题经费,满足课题研究需要的一切软硬件需求。联系方式:wencheng.liu@nwpu.edu.cn 个人相册 教育教学个人经历 personal experience 教育经历 北京航空航天大学 本科 复合材料与工程 2011.09-2015.07澳大利亚莫纳什大学 博士 固体力学 2015.10-2019.03 荣誉获奖获奖信息 The winning information 2022年 江苏省双创博士2023年 姑苏创新青年领军人才 科学研究社会兼职 Social Appointments 担任国际学术期刊审稿人包括:International Journal of Fatigue、International journal of Mechanical Science、Mechanicas of Materials、Internationa Journal of Material Forming、Advances in Mechanical Engineering、International Journal of advanced manufacturing technology 等。 学术成果科学研究 Scientific Research 研究方向:1.微观晶体塑性力学、损伤场理论和宏观塑性、断裂力学理论2.增材钛合金、铝合金微观疲劳裂纹萌生、扩展机理及预测模型研究3.激光数字散斑互相关测量技术4.先进复合材料多轴强度、疲劳力学性能 综合介绍学术成果 Academic Achievements 在研科研项目:1. 国家自然科学基金青年科学基金项目,多尺度晶体塑性非线性变形本构及其算法研究,主持,24万元,在研,2021.01-2023.122. 国家自然科学基金面上项目,机械/磁流变复合装夹的复杂薄壁件铣削残余应力主动控制基础研究,主要参与,58万元,在研,2022.01-2025.123. 中央高校基本业务费资助项目,集成材料计算工程,主持,30万元,在研,2022.01-2023.124. 太仓市基础研究计划面上项目,跨尺度多相合金晶体塑性本构模型及其算法研究,主持,10万元,在研,2022.10-2024.095. 江苏省双创博士人才项目,高强轻合金成型集成计算材料工程技术与应用,主持,15万元,在研,2023.01-2024.126. 姑苏创新青年领军人才项目,先进金属材料多轴加载力学性能及其多尺度塑性力学理论研究,主持,50万元,在研,2024.01-2026.12发表论文:[16]. W. Liu, J. Liu, X. Li, J. Huang, Y. Chen, Y. Li, J. Ma*, H. Cui** (2024) Anisotropic elastoplasticity and fracture of SCFR-PEEK composites in complex biaxial loading: Experiments and modelling, Composites Science and Technology, 110569.[15]. W. Liu, X. Li, M. Liu, H. Cui, J. Huang, Y. Pang, J. Ma** (2024) Virtual laboratory enabled constitutive modelling of dual phase steels, International Journal of Plasticity, 103930.[14]. W. Liu, J. Huang, Y. Pang, K. Zhu, S. Li, J. Ma* (2023) Multi-scale modelling of evolving plastic anisotropy during Al-alloy sheet forming, International Journal of Mechanical Sciences, 108168.[13]. W. Liu, J. Huang, J. Liu, X. Wu, K. Zhang*, A. Huang (2021) Experimental and crystal plasticity modelling study on the crack initiation in micro-texture regions of Ti-6Al-4V during high cycle fatigue tests, International Journal of Fatigue, 106203. [12]. W. Liu, Y. Pang* (2021) A multi-scale modelling framework for anisotropy prediction in aluminium alloy sheet and its application in the optimisation of the deep-drawing process. International Journal of Advanced Manufacturing Technology, 114: 3401-3417. [11]. W. Liu, B.K. Chen, Y. Pang*, A. Najafzadeh (2020) A 3D phenomenological yield function with both in and out-of-plane mechanical anisotropy using full-field crystal plasticity spectral method for modelling sheet metal forming of strong textured aluminum alloy. International Journal of Solids and Structures, 193: 117-133. [10]. W. Liu, B.K. Chen, Y. Pang* (2019) Numerical investigation of evolution of earing, anisotropic yield and plastic potentials in cold rolled FCC aluminium alloy based on the crystallographic texture measurements, European Journal of Mechanics - A/Solids, 75: 41-45. [9]. W. Liu*, B.K. Chen (2018) Sheet metal anisotropy and optimal non-round blank design in high-speed multi-step forming of AA3104-H19 aluminium alloy can body, International Journal of Advanced Manufacturing Technology, 95(9-12): 4265-4277. [8]. W. Liu*, B.K. Chen, Y. Pang (2018) A new temperature-dependent anisotropic constitutive model for predicting deformation and spring-back in warm deep drawing of automotive AA5086-H111 aluminium alloy sheet, International Journal of Advanced Manufacturing Technology, 97(9-12): 3407-3421. [7]. Y. Pang, N. Grilli, H. Su, W. Liu*, J. Ma, S. F. Yu** (2022) Experimental investigation on microstructures and mechanical properties of PG4 flash-butt rail welds, Engineering Failure Analysis, 141: p.106650.[6]. J. Huang, C. Li, W. Liu* (2020) Investigation of internal friction and fracture fatigue entropy of CFRP laminates with various stacking sequences subjected to fatigue loading. Thin-Walled Structures, 155: 106978. [5]. Y. Pang*, B.K. Chen, W. Liu, S.F. Yu, S.N. Lingamanaik (2020) Development of a non-contact and non-destructive laser speckle imaging system for remote sensing of anisotropic deformation around fastener holes. NDT and E International, 111: p.102219. [4]. Y. Pang, B.K. Chen, W. Liu* (2019) An investigation of plastic behaviour in cold-rolled aluminium alloy AA2024-T3 using laser speckle imaging sensor, International Journal of Advanced Manufacturing Technology, 103(5): 2707-2724. [3]. F. Sun, P. Liu, W. Liu* (2021). Multi-level deep drawing simulations of AA3104 aluminium alloy using crystal plasticity finite element modelling and phenomenological yield function. Advances in Mechanical Engineering, 13(3): 1-19. [2]. J. Huang, H. Yang, W. Liu, K. Zhang*, A. Huang (2022) Confidence level and reliability analysis of the fatigue life of CFRP laminates predicted based on fracture fatigue entropy, International Journal of Fatigue, 156: p.106659.[1]. C. Yang , K. Zhu, Y. Liu , Y. Cai , W. Liu , K. Zhang, J. Huang* (2021) A Comparative Study of Fatigue Energy Dissipation of Additive Manufactured and Cast AlSi10Mg Alloy. Metals, 11(8):1274. |