吴涛教师主页|暨南大学化学与材料学院简历|吴涛招生信息|吴涛专利信息

教师主页移动版

主页 > 广东省 > 暨南大学

吴涛

姓名 吴涛
教师编号 29384
性别
学校 暨南大学
部门 化学与材料学院
学位 博士
学历 化学与材料学院
职称 博士
联系方式 【发送到邮箱】
邮箱 【发送到邮箱】
人气
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳

导航 个人简介 学习经历 工作经历 研究方向 主要论文 主要著作 承担课题,个人信息 姓名: 吴涛 部门: 化学与材料学院 直属机构: 超分子配位化学研究所 性别: 男 职称: 教授 学位: 博士 毕业院校: 美国加利福尼亚大学河滨分校 电子邮箱: wutao@jnu.edu.cn 邮编: 510632 荣誉奖励: 国家级青年人才 联系方式 个人简介 吴涛,教授,博士生导师。1995-1999年就读于湖北三峡学院师范学院(现名三峡大学),获化学教育专业理学学士学位;2000-2003年就读于广东汕头大学,获工业催化专业工学硕士学位(导师李丹教授);2003-2006年在汕头大学理学院化学系任教;2006-2011年就读于美国加州大学河滨分校(University of California, Riverside) ,获无机化学专业理学博士学位(导师Pingyun Feng 教授);2011-2012年在美国加州大学河滨分校从事博士后研究工作(合作导师Pingyun Feng 教授);2012-2021年任职于苏州大学材料与化学化工学部化学学院;2021年1月任职于暨南大学化学与材料学院。2011年获国家优秀自费留学生奖;2012年入选中共中央组织部第二批“青年千人计划”、江苏省“创新团队计划”引进团队核心成员和苏州市“高等院校、科研院所紧缺高层次人才”;2013年入选江苏省“双创计划”引进人才;2014年入选苏州市工业园区金鸡湖“双百人才计划”。吴涛教授长期从事晶态杂化微孔框架材料和半导体纳米团簇等化学材料领域的基础性研究工作。目前已在化学和材料领域系列国际期刊发表联合署名学术论文150余篇,其中以第一作者和第一通讯作者身份在Acc. Chem. Res.、Nat. Sci. Rev.、Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、CCS Chem.、Chem. Sci.、Chem. Mater.、Chem. Comm.等期刊上发表学术论文90余篇。曾作为课题负责人主持中组部“青年千人计划”科研项目、国家自然科学基金面上项目2项、江苏省杰出青年基金项目1项和江苏省“六大人才高峰”项目。现主持国家自然科学基金面上项目2项。 学习经历 1995/09 - 1999/06     三峡大学                          化学教育专业           理学学士2000/09 - 2003/06     汕头大学                          工业催化专业           工学硕士2006/09 - 2011/08     美国加州大学河滨分校      无机化学专业           理学博士 工作经历 2003/07 - 2006/08       汕头大学                           助教、讲师2011/09 - 2012/04       美国加州大学河滨分校       博后2012/06 - 2021/04       苏州大学                           教授/博导2021/01 - 至今              暨南大学                           教授/博导 研究方向 本课题组致力于晶态无机-有机杂化功能材料的设计、合成及功能化探究等方面的基础性研究,为新型晶态材料的实际应用提供物质基础和技术支持。该研究涉及如下多个领域:无机合成与制备化学、配位化学、团簇化学、光电化学、金属有机框架材料、分子筛多孔材料、半导体材料。目前,主要研究兴趣如下:(1)新型金属硫族分子团簇或纳米团簇的设计合成和表面官能化;(2)金属硫族簇基开放骨架和基于金属硫族簇基MOFs材料的设计合成;(3)具有半导体特性的类分子筛骨架材料的设计合成和光电性能调控;(4)基于微孔半导体主客体材料的构建及其能量转移和光电子转移机制研究;(5)离散型金属硫族分子团簇的荧光和电化学发光性能研究;(6)多元金属硫族簇基电催化剂的制备及其电催化、光催化性能研究; 主要论文 论文成果 (*为通讯作者)Research ID: http://www.researcherid.com/rid/H-5754-2012; (updated on 2021-10-05)2021[153] Atomically Precise Metal Chalcogenide Supertetrahedral Clusters: Frameworks to Molecules, and Structure to FunctionZhang, J. X.; Feng, P.*; Bu, X.; Wu, T.* Nat. Sci. Rev. 2021, in press (https://doi.org/10.1093/nsr/nwab076).[152] A Chalcogenide-cluster-based Semiconducting Nanotube Array with Oriented Photoconductive BehaviorTang, J. Q.++; Wang, X.++; Zhang, J. X.++; Wang, J.; Yin, W. J.; Li, D.-S.; Wu, T.*Nat. Commun. 2021, 12, 4275. [++These authors contributed equally to this work][151] Minimized External Electric Field on Asymmetric Monolayer Maximizes Charge Separation for PhotocatalysisYang, W. J.; Wang, X. L.; Kong, N. N.; Liu, C. D.; Sun, P. P.; Wang, Z. Q.; Ding, Y. Y.; Lin, H. P.; Li, D.-S.; Wu, T.*Appl. Catal. B: Environ. 2021, 295, 120266.[150] 0D/2D Heterostructure Constructed by Ultra-small Chalcogenide-cluster Aggregated Quaternary Sulfides and g-C3N4 for Enhanced Photocatalytic H2 EvolutionWu, Z.; Wang, X.-L.; Wang, X.*; Xu, X. F; Li, D.-S.; Wu, T.*Chem. Eng. J. 2021, 426, 131216. [149] 0D/1D Heterostructure for Efficient Electrocatalytic CO2-to-C1 Conversion by Ultra-small Cluster-based Multi-metallic Sulfide Nanoparticles and MWCNTsWang, X.; Wang, X.-L.; Lv, J.; Wu, Z.; Zhang, J. X.; Hu, D. D.; Xue, C. Z.; Li, D.-S.; Zhu, X.; Wu, T.*Chem. Eng. J. 2021, 422, 130045. [148] Bifunctional Electrocatalysts Derived from Cluster-based Ternary Sulfides for Oxygen Electrode ReactionsWang, X.-L.; Wu, Z.; Wang, X.; Xue, C. Z.; Liu, C. D.; Zhang, J. X.; Zhou, R.; Li, D.-S.; Wu, T.*Electrochimica Acta 2021, 376, 138048.[147] Unveiling the Impurity-modulated Photoluminescence from Mn2+-containing Metal Chalcogenide Semiconductors via Fe2+ dopingWang, Z. Q.; Liu, Y.; Zhang, J. X.; Wang, X.; Wu, Z.; Wu, J.; Chen, N.; Li, D.-S.; Wu, T.*J. Mater. Chem. C 2021, in press (DOI: 10.1039/d1tc03944j). [146] Non-Interpenetrated Metal-Chalcogenide Cluster-Based Frameworks Assembled by Small-Sized Penta-Supertetrahedral ClustersLiu, C. D.; Wu, Z.; Wang, X.-L.; Ding, Y. Y.; Zhang, J. X.*; Yang, W. J.; Wang, X.; Zhou, R.; Wu, T.Cryst. Growth Des. 2021, 21, 1939-1945.Prior to Jinan University2020[145] Metal Chalcogenide Supertetrahedral Clusters: Synthetic Control over Assembly, Dispersibility and Their Functional ApplicationsZhang, J. X.; Bu, X. H.; Feng, P. Y.; Wu, T.*Acc. Chem. Res. 2020, 53, 2261-2272. [封面论文][144] New Insights into Mn–Mn Coupling Interaction-Directed Photoluminescence Quenching Mechanism in Mn2+-Doped SemiconductorsLiu, Y.++; Zhang, J. X.++; Han, B.; Wang, X.; Wang, Z. Q.; Xue, C. Z.; Bian, G. Q.; Hu, D. D.; Zhou, R.; Li, D.-S.; Wang, Z. X.; Ouyang, Z. W.; Li, M. D.; Wu, T.*J. Am. Chem. Soc. 2020, 142, 6649-6660. [++These authors contributed equally to this work][143] A Photoconductive X-ray Detector with a High Figure of Merit based on an Open-Framework Chalcogenide SemiconductorWu, S. J.++; Liang, C. Y.++; Zhang, J. X.; Wu, Z.; Wang, X.-L.; Zhou, R.; Wang, Y. X.; Wang, S. A.; Li, D.-S.; Wu, T.*Angew. Chem. Int. Ed. 2020, 59, 18605-18610. [++These authors contributed equally to this work] [封面论文][142] Direct Observation of Charge Transfer between Molecular Heterojunctions Based on Inorganic Semiconductor ClustersXue, C. Z.++; Fan, X.++; Zhang, J. X.; Hu, D. D.; Wang, X.-L.; Wang, X.; Zhou, R.; Lin, H. P.; Li, Y. Y.; Li, D.-S.; Zheng, D. Y.; Yang, Y.; Han, K. L.; Wu, T.*Chem. Sci.2020, 11, 4085-4096. [++These authors contributed equally to this work][141] Breakdown of Valence Shell Electron Pair Repulsion Theory in an H-Bond-Stabilized Linear sp-Hybridized SulfurWu, J.++; Jin, B.++; Wang, X.; Ding, Y. Y.; Wang, X.-L.; Tang, D. D.; Li, X. H.; Shu, J.; Li, D.-S.; Lin, Q. P.; Wu, Y.-B.; Wu, T.*CCS Chemistry, 2020, 2, 2584-2590. [++These authors contributed equally to this work][140] Atomically Precise Metal-Chalcogenide Semiconductor Molecular Nanoclusters with High Dispersibility: Designed Synthesis and Intracluster Photocarrier DynamicsZhang, J. X.++; Qin, C. C.++; Zhong, Y. S.++; Wang, X.; Wang, W.; Hu, D. D.; Liu, X. S.; Xue, C. Z.; Zhou, R.; Shen, L.; Song, Y. L.; Xu, D. G.; Lin, Z. E.; Guo, J.; Su, H. F.; Li, D.-S.; Wu, T.*Nano Research 2020, 13, 2828-2836. [++These authors contributed equally to this work][139] S-Doped Ni(OH)2 Nano-Electrocatalyst Confined in Semiconductor Zeolite with Enhanced Oxygen Evolution ActivityHu, D. D.; Wang, X.; Chen, X. T.; Wang, Y. X.; Hong, Anh N.; Zhong, J.; Xian, H.; Feng, P.*; Wu, T.*J. Mater. Chem. A 2020, 8, 11255-11260. [138] A High-Activity Bimetallic OER Cocatalyst for Efficient Photoelectrochemical Water Splitting of BiVO4Hu, R. L.++; Meng, L. X.++; Zhang, J. X.; Wang, X.; Wu, S. J.; Wu, Z.; Zhou, R.; Li, L.; Li, D.-S.; Wu, T.*Nanoscale 2020, 12, 8875-8882. [++These authors contributed equally to this work][137] Hierarchical Heterostructure of SnO2 Confined on CuS Nanosheets for Efficient Electrocatalytic CO2 ReductionWang, X.; Lv, J.; Zhang, J. X.; Wang, X.-L.; Xue, C. Z.; Bian, G. Q.; Li, D.-S.; Wang, Y.; Wu, T.*Nanoscale 2020, 12, 772-784.[136] Enhanced Water Dispersibility of Discrete Chalcogenide Nanoclusters with Sodalite-Net Loose-Packing Pattern in Crystal Lattice Xue, C. Z.; Zhang, L.; Wang, X.; Hu, D. D.; Wang, X.-L.; Zhang, J. X.; Zhou, R.; Li, D.-S.; Su, H. F.; Wu, T.* Inorg. Chem. 2020, 59, 15587-15594. [封面论文][ACS Editors’ Choice][135] Two Copper-Rich Open-Framework Chalcogenides Built from Unusual [Cu5(SnxM1-x)Se10] Cluster and [(SnxM1-x)2Se6] Dimeric Linker (M = In and Ga)Han, B.++; Wang, J.++; Liu, Y.; Wang, X.; Xue, C. Z.; Lv, J.; Wu, Z.; Zhou, R.; Xu, D. G.*; Li, D.-S.; Wu, T.*Inorg. Chem. 2020, 59, 7919-7923.[++These authors contributed equally to this work][134] Antimony-Assisted Assembly of Basic Supertetrahedral Clusters into Heterometallic Chalcogenide SupraclustersDing, Y. Y.; Zhang, J. X.; Liu, C. D.; Wang, X.-L.; Wu, Z.; Wang, X.; Zhou, R.; Li, D.-S.; Wu, T.*Inorg. Chem. 2020, 59, 13000-13004.[133] Multi-metal Nanocluster Assisted Cu-Ga-Sn Tri-doping for Enhanced Photoelectrochemical Water Splitting of BiVO4 FilmHu, R. L.; Wang, X.-L.; Zhang, J. X.; Hu, D. D.; Wu, J.; Zhou, R.; Li, L.; Li, M. D.; Li, D.-S.; Wu, T.*Adv. Mater. Interfaces 2020, 7, 2000016.[132] Controllable Incorporation of 1,2,4-triazolate into Cluster-based Metal-Chalcogenide FrameworksLiu, X. S.; Xue, C. Z.; Wang, X.; Zhang, J. X.*; Wu, T.Dalton Trans. 2020, 49, 11489-11492.[131] Two new layered metal chalcogenide frameworks as photocatalysts for highly efficient and selective dye degradationWu, S. J.; Wu, Z.; Wang, X.-L.; Wang, X.; Zhou, R.; Li, D.-S.; Wu, T.*Dalton Trans. 2020, 49, 13276-13281. [130] Exfoliation of Bimetallic (Ni, Co) Carbonate Hydroxide Nanowires by Ar Plasma for Enhanced Oxygen EvolutionSun, H. M.; Miao, Y. L.; Wu, T.; Wang, Q.* Chem. Commun. 2020, 56, 872-875.2019[129] Cooperativity by Multi-Metals Confined in Supertetrahedral Sulfide Nanocluster on Enhancing Electrocatalytic Hydrogen EvolutionLiu, D. L.++; Fan, X.++; Wang, X.; Hu, D. D.; Xue, C. Z.; Liu, Y.; Wang, Y.; Zhu, X.; Guo, J.; Lin, H. P.*; Li, Y. Y.; Zhong, J.*; Li, D.-S.; Bu, X.*; Feng, P.; Wu, T.*Chem. Mater. 2019, 31, 553-559. [++These authors contributed equally to this work][128] Light-Triggered Evolution of Molecular Cluster toward Sub-nanoscale Heterojunction with High Interface DensityXue, C. Z.; Zhang, J. X.; Wang, X.; Gu, M.; Zhu, Y. M.; Li, D.-S.; Guo, J.; Liu, Y.; Wu, T.*Chem. Comm. 2019, 55, 8146-8149. [127] A Multivalent Mixed-metal Strategy for Single-Cu+-Ion-Bridged Cluster-based Chalcogenide Open Frameworks for Sensitive Nonenzymatic Detection on GlucoseZhang, J. X.++; Wang, X.++; Lv, J.; Li, D.-S.; Wu, T.*Chem. Comm. 2019, 55, 6357-6360. [++These authors contributed equally to this work] (Inside Cover)[126] Molecular Modulation of a Molybdenum−Selenium Cluster by Sulfur Substitution to Enhance the Hydrogen Evolution ReactionWang, X.-L.++; Xue, C. Z.++; Kong, N. N.++; Wu, Z.; Zhang, J. X.; Wang, X.; Zhou, R.; Lin, H. P.*; Li, Y. Y.; Li, D.-S.; Wu, T.*Inorg. Chem. 2019, 58, 12415-12421. [++These authors contributed equally to this work][125] Two Penta-Supertetrahedral Cluster-Based Chalcogenide Open Frameworks: Effect of Cluster Spatial Connectivity on Electronic Transport EfficiencyLv, J.; Zhang, J. X.; Xue, C. Z.; Hu, D. D.; Wang, X.; Li, D.-S.; Wu, T.*Inorg. Chem. 2019, 58, 3582-3585.[124] Three-Dimensional Superlattices Based on Unusual Chalcogenide Supertetrahedral TO2-InSnS NanoclustersWang, W.; Wang, X.; Yang, H. J.; Luo, M.; Xue, C. Z.; Lin, Z. E.; Wu, T.*Inorg. Chem. 2019, 58, 31-34.[123] A New Cluster-based Chalcogenide Zeolite Analogue with a Large Inter-cluster Bridging AngleWu, Z.; Wang, X.-L.; Hu, D. D.; Wu, S. J.; Liu, C. D.; Wang, X.; Zhou, R.; Li, D.-S.; Wu, T.*. Inorg. Chem. Front. 2019, 6, 3063-3069. [122] New 2D Assemblage of Supertetrahedral Chalcogenide Clusters with Tetravalent-Metal Induced Interrupted SitesWu, Z.; Luo, M.; Xue, C. Z.; Zhang, J. X.; Lv, J.; Wang, X.; Wu, T.* Cryst. Growth Des. 2019, 19, 4151-4156.[121] Highly Open Chalcogenide Frameworks Built from Unusual Defective Supertetrahedral ClusterXue, C. Z.; Zhang, L.; Wang, X. L.; Wang, X.; Zhang, J. X.; Wu, T.*Dalton Trans. 2019, 48, 10799-10803.[120] Three New Metal Chalcogenide Open Frameworks Built through Co-assembly and/or Hybrid Assembly between Supertetrahedral T5-InOS and T3-InS NanoclustersZhang, J. X.; Liu, X. S.; Ding, Y. Y.; Xue, C. Z.; Wu, T.*Dalton Trans. 2019, 48, 7537-7540.[119] Perovskite-like Hybrid Lead Bromides with Bipyridine as Structure-Directing AgentLiu, Y.; Liu, D. L.; Wu, T.*J. Solid State Chem. 2019, 269, 220-224.2018[118] The Largest Supertetrahedral Oxychalcogenide Nanocluster and Its Unique AssemblyYang, H. J.; Zhang, J.; Luo, M.; Lin, H. P.; Li, Y. Y.; Li, D. S.; Feng, P.; Wu, T.*J. Am. Chem. Soc. 2018, 140, 11189-11192. (Inside Cover)[117] Pushing up the Size Limit of Metal Chalcogenide Supertetrahedral NanoclusterXu, X. F.++; Wang, W.++; Liu, D. L.; Hu, D. D.; Wu, T.*, Bu, X.; Feng, P.* J. Am. Chem. Soc. 2018, 140, 888-891. [++These authors contributed equally to this work][116] Highly Tunable Heterojunctions from Multimetallic Sufide Nanoparticles and Silver NanowiresLiu, D. L.; Liu, Y.; Huang, P.; Zhu, C.; Kang, Z. H.; Shu, J.; Chen, M. Z.; Zhu, X.; Guo, J.; Zhuge, L. J.; Bu, X.; Feng, P.*; Wu. T.*Angew. Chem. Int. Ed. 2018, 57, 5374-5378. [115] A Semiconducting Metal-Chalcogenide-Organic Framework with Square-Planar Tetra-coordinated SulfurYang, H. J.; Luo, M.; Wu, Z.; Wang, W.; Xue, C. Z.; Wu, T.*Chem. Commun. 2018, 54, 11272-11275.[114] Monodisperse Ultrasmall Manganese-Doped Multi-metal Oxysulfide Nanoparticles as Highly Efficient Oxygen Reduction ElectrocatalystZhang, Y. Y.; Wang, X.*; Hu, D. D.; Xue, C. Z.; Wang, W.; Lin, J.; Yang, H. J.; Wu, T.*ACS Applied Materials & Interfaces. 2018, 10, 13413-13424.[113] Host-Guest Electrocatalyst with Cage-Confined Cu2S Nanoparticles Embeded in Semiconductor Chalcogenide Zeolite for Highly Efficient Oxygen Reduction ReactionHu, D. D.; Wang, X.; Yang, H. J.; Liu, D. L.; Zhang, Y. Y.; Xue, C. Z.; Wang, W.; Li, D. S.; Wang, Y.; Guo, J.; Wu, T.*Electrochimica Acta. 2018, 282, 877-885.[112] Exploring the Effect of Intercluster Torsion Stress on Mn2+-Related Red Emission from Cluster-based Layered Metal ChalcogenidesXu, X. F.; Hu, D. D.; Xue, C. Z.; Zhang, J. X.; Li, D. S.; Wu, T.*J. Mater. Chem. C 2018, 6, 10480-10485.[111] A Stable Super-Supertetrahedron with Infinite Order via Assembly of Supertetrahedral T4 Zinc-Indium Sulfide ClustersZhang, L.; Xue, C. Z.; Wang, W.; Hu, D. D.; Lv, J.; Wu, T.*Inorg. Chem. 2018, 57, 10485-10488.[110] Metal-Chalcogenide Imidazole Frameworks with Hybrid Intercluster Bridging Mode and Unique Interrupted Topological StructureZhang, J. X.; Wang, W.; Xue, C. Z.; Zhao, M. F.; Hu, D. D.; Lv, J.; Wang, X.; Li, D. S.; Wu, T.*Inorg. Chem. 2018, 57, 9790-9793.[109] Hybrid Assembly of Different Sized Supertetrahedral Clusters into a Unique Non-Interpenetrated Mn-In-S Open Framework with Large CavityWang, H. X.; Wang, W.; Hu, D. D.; Luo, M.; Xue, C. Z.; Li, D. S.; Wu, T.*Inorg. Chem. 2018, 57, 6710-6715.[108] Nonlinear Variation in Composition and Optical Band Gap of Alloyed Cluster-Based Open-Framework Metal ChalcogenideLin, J.; Hu, D. D.; Yang, H. J.; Liu, Y.; Xue, C. Z.; Wu, T.*Inorg. Chem. 2018, 57, 4248-4251.[107] An Unusual Metal Chalcogenide Zeolitic Framework Built from the Extended Spiro-5 Units with Supertetrahedral Clusters as NodesWang, W.; Wang, X.; Hu, D. D.; Yang, H. J.; Xue, C. Z.; Lin, Z. E.; Wu, T.*Inorg. Chem. 2018, 57, 921-925.[106] Assembly of Oxygen-Stuffed Supertetrahedral T3-SnOS Cluster into Open Frameworks with Single-Sn(II) Ion as LinkerLv, J.; Wang, W.; Zhang, L.; Xue, C. Z.; Hu, D. D.; Wu, T.*Cryst. Growth Des. 2018, 18, 4834-4837.[105] Supertetrahedral Cluster-Based In-Se Open Frameworks with Unique Polyselenide Ions as LinkerXue, C. Z.; Lin, J.; Yang, H. J.; Wang, W.; Li, D. S.; Wu, T.*Cryst. Growth Des. 2018, 18, 2690-2693.[104] Cd/In-codoped TiO2 Nanochips for High-Efficiency Photocatalytic Dye DegradationLiu, D. L.; Huang, P.; Liu, Y.; Wu, Z.; Li, D. S.; Guo, J.; Wu, T.*Dalton Trans. 2018, 47, 6177-6183.[103] A 3D Neutral Chalcogenide Framework Built from Supertetrahedral T3 Cluster and Metal Complex for Electrocatalytic Oxygen Reduction ReactionZhang, Y. Y.++; Hu, D. D.++; Xue, C. Z.; Yang, H. J.; Wang, X.; Wu, T.*Dalton Trans. 2018, 47, 3227-3220. [++These authors contributed equally to this work][102] A Unique Non-Interpenetrated Open-Framework Chalcogenide with a Large CavityLuo, M.; Yang, H. J.*; Wang, W.; Xue, C. Z.; Wu, T.*Dalton Trans. 2018, 47, 49-52.[101] Insight into High-Efficiency Electrochemiluminescence from In-Situ Mn2+-Doped Zn-In-S Semiconductor Nanoclusters: Anti-site Defects Assisted Electron Transfer between Host and DopantWang, F.; Lin, J.; Yu, S. S.; Cui, X. Q.*; Ali, A.; Wu, T.; Liu, Y.* ACS Applied Materials & Interface. 2018, 10, 38223-38229.[100] Precise Mono-Cu+ Ion Doping Enhanced Electrogenerated Chemiluminescence from Cd-In-S Supertetrahedral Chalcogenide Nanocluster for Dopamine DetectionWang, F.; Lin, J.; Wang, H. Y.; Yu, S. S.; Cui, X. Q.; Ali, A.; Wu, T.; Liu, Y.* Nanoscale 2018, 10, 15932-15937.[99] Novel Zn0.8Cd0.2S@g-C3N4 Core-shell Heterojunctions with Twin Structure for Enhanced Visible-Light-Driven Photocatalytic Hydrogen GenerationTian, F. Y.; Hou, D. F.; Tang, F.; Deng, M.; Qiao, X. Q.; Zhang, Q. C.; Wu, T.; Li, D. S.* J. Mater. Chem. A 2018, 6, 17086-17094.[98] Ligand-Controlled Integration of Zn and Tb by Photoactive Terpyridyl-Functionalized Tricarboxylate as Highly Selective and Sensitive Sensor for NitrofuransZhou, Z. H.; Dong. W. W.; Wu, Y. P.; Zhao, J.; Li, D. S.*; Wu, T.; Bu, X.* Inorg. Chem. 2018, 57, 3833-3839.2017[97] Two Unique Crystalline Semiconductor Zeolite Analogues Based on Hybrid Indium Selenide ClustersXue, C. Z.; Hu, D. D.; Zhang, Y. Y.; Yang, H. J.*; Wang, X.; Wang, W.; Wu, T.*Inorg. Chem. 2017, 56, 14763-14766.[96] Cation-Exchanged Zeolitic Chalcogenide for CO2 AdsorptionYang, H. J.++; Luo, M.++; Chen, X. T.++; Zhao, X.; Lin, J.; Hu, D. D.; Li, D. S.; Bu, X.; Feng, P.*; Wu, T.*Inorg. Chem. 2017, 56, 14999-15005. [++These authors contributed equally to this work][95] Substituent-Modulated Assembly Formation: An Approach to Enhancing the Photostability of Photoelectric-Sensitive Chalcogenide-Based Ion-Pair HybridsLin, J.; Fu, Z. X.; Zhang, J. X.; Zhu, Y. J.; Hu, D. D.; Li, D. S.; Wu, T.*Inorg. Chem. 2017, 56, 3119-3122.[94] A 36-Membered-Ring Metal Chalcogenide with a Very Low Framework DensityWang, W.; Yang, H. J.; Luo, M.; Zhong, Y. S.; Xu, D. G.; Wu, T.*; Lin, Z. E.* Inorg. Chem. 2017, 56, 14730-14733.[93] PCU-Type Copper-Rich Open-Framework Chalcogenides: Pushing Up the Length Limit of Connection Mode and the First Mixed-Metal [Cu7GeSe13] ClusterLuo, M.; Hu, D. D.; Yang, H. J.*; Li, D. S.; Wu, T.*Inorg. Chem. Front. 2017, 4, 387-392.[92] Assembly of Supertetrahedral Cluster into Cu-In-S Superlattice via Unprecedented Vertex-Edge Connection ModeWang, H. X.; Yang, H. J.*; Wang, W.; Xue, C. Z.; Zhang, Y. Y.; Luo, M.; Zhang, Q.; Hu, D. D.; Lin, J.; Li, D. S.; Wu, T.*Cryst. Eng. Comm. 2017, 19, 4709-4712.[91] The First Observation on Dual Self-Closed and Extended Assembly Modes in Supertetrahedral T3 Clusters Based Open-Framework ChalcogenideWang, W.; Yang, H. J.; Xue, C. Z.; Luo, M.; Lin, J.; Hu, D. D.; Wang, X.; Lin, Z. E.; Wu, T.*Cryst. Growth Des. 2017, 17, 2936-2940.[90] Structural Transformation of Selenidostannates from 1D to 0D and 2D via Stepwise Amine-Templated Assembly StrategyHu, D. D.++; Zhang, Y. Y.++; Yang, H. J.; Lin, J.; Wu, T.*Dalton Trans. 2017, 46, 7534-7539. [++These authors contributed equally to this work][89] Dual Emissions from MnS Clusters Confined in the Sodalite Nanocage of a Chalcogenide-Based Semiconductor ZeoliteHu, D. D.; Zhang, Y. Y.; Lin, J.; Hou, Y. K.; Li, D. S.; Wu, T.*Dalton Trans. 2017, 46, 3929-3933.[88] Synthesis, Crystal Structure, Near-IR Photoelectric Response of Two 1-D Selenides: [Cu2MSe5][Mn(H+-en)2(en)] (M= Ge, Sn)Zhang, Y. Y.; Hu, D. D.; Yang, H. J.; Lin, J.; Wu, T.*J. Solid State Chem. 2017, 251, 61-64.[87] Directly Anchoring Fe3C Nanoclusters and FeNx Sites in Ordered Mesoporous Nitrogen-Doped Graphitic Carbons to Boost Electrocatalytic Oxygen ReductionChen, Z.; Gao, X. M.; Wei, X. R.; Wang, X. X.; Li, Y. G.; Wu, T.; Guo, J.; Gu, Q. F.; Wu, D.; Chen, X. D.; Wu, Z. X.*; Zhao, D. Y. Carbon, 2017, 121, 143-153.2016[86] Intrinsic Vacancy Point Defect Induced Electrochemiluminescence from Coreless Supertetrahedral Chalcogenide NanoclusterWang, F.++; Lin, J.++; Zhao, T. B.; Hu, D. D.; Wu, T.*; Liu Y.* J. Am. Chem. Soc. 2016, 138, 7718-7724. [++These authors contributed equally to this work][85] Highly Selective and Rapid Cesium Uptake of Radionuclide Cesium Based on Robust Zeolitic Chalcogenide via Stepwise Ion-Exchange StrategyYang, H. J.; Luo, M.; Luo, L.; Wang, H. X.; Hu, D. D.; Lin, J.; Wang, X.; Wang, Y. L.; Wang, S. A.; Bu, X.*; Feng, P.*; Wu, T.*Chem. Mater. 2016, 28, 8774-8780.[84] A Novel Copper-Rich Open-Framework Chalcogenide Constructed from Octahedral Cu4Se6 and Icosahedral Cu8Se13 NanoclusterYang, H.-J.; Wang, L.; Hu, D.-D.; Lin, J.; Luo, L.; Wang, H.-X.; Wu, T.*Chem. Comm. 2016, 52, 4140-4143. (Inside Cover)[83] Exploring Mn2+-Location-Dependent Red Emission from (Mn/Zn)-Ga-Sn-S Supertetrahedral Nanocluster with Relatively Precise Dopant PositionZhang, Q.; Lin, J.; Yang, Y.-T.; Qin, Z.-Z.; Li, D. S.; Wang, S. A.; Liu, Y. P.; Zou, X. X.; Wu, Y.-B.*; Wu, T.*J. Mater. Chem. C 2016, 4, 10435-10444. (Hot paper, Front Cover) [82] Highly Effective Nano-segregation of Dual Dopants in a Micron-Sized Nanocluster-Based Semiconductor Molecular Single Crystal for Targeting White-Light EmissionLin, J.; Wang, L.; Zhang, Q.; Bu, F.; Wu, T.; Wu, T.*; Bu, X.; Feng, P. J. Mater. Chem. C 2016, 4, 1645-1650.[81] Improving Photoluminescence Emission Efficiency of Nanocluster Based Materials by In-situ Doping Synthetic StrategyLin, J.; Hu, D. D.; Zhang, Q.; Li, D.-S.; Wu, T.*; Bu, X.; Feng, P.* J. Phys. Chem. C 2016, 120, 29390-29396.[80] Cuprous Iodide Pseudo-Polymorphs Based on Imidazole Ligand and Their Luminescence ThermochromismFu, Z. X.; Lin, J.; Wang, L.; Li, C.; Yan, W. B.; Wu, T.*Crystal Growth & Design 2016, 4, 2322-2327.[79] Effects of Ligand and Guest Solvent Molecule on Luminescent Property of Tb:Eu-Codoped Indium-Based MOFYan, W. B.; Wang, L.; Yangxiao, K. T.; Fu, Z. X.; Wu, T.*Dalton Trans. 2016, 45, 4518-4521.[78] Biaxially Strained PtPb/Pt Core/Shell Nanoplate Boosts Oxygen Reduction CatalysisBu, L. Z.; Zhang, N.; Guo, S. J.*, Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D.*; Huang, X. Q.* Science 2016, 354(6318), 1410-1414.[77] A Lanthanide Complex for Metal Encapsulations and Anion ExchangesSun, Y. Q.; Wan, F.; Li, X. X.; Lin, J.; Wu, T.; Zheng, S. T.*; Bu, X.* Chem. Comm.2016, 52, 10125-10128.[76] Out-of-Substrate Ag-Ag2O Nanoplates: Surfactantless Photochemical Synthesis, Structural Evolution, and Mechanistic StudyLi, M. Y.; Mao, Y. Q.; Yang, S. K.; Dai, T. T.; Yang, H.; Feng, F.; Wu, T.; Chen, M.; Xu, G. Q.*; Wu, J. H.* ACS Omega 2016, 1(4), 696-705.2015[75] Interrupted Chalcogenide-Based Zeolite-Analog Semiconductor: Atomically Precise Doping for Tunable Electro-/Photoelectrochemical PropertiesLin, J.++; Dong, Y. Z.++; Zhang, Q.; Hu D. D.; Li, N.; Wang, L.*; Liu, Y.*; Wu, T.*Angew. Chem. Int. Ed. 2015, 54, 5103-5107. (VIP) [++These authors contributed equally to this work][74] Multi-Step Host-Guest Energy Transfer Between Inorganic Chalcogenide-Based Semiconductor Zeolite Material and Organic Dye MoleculesHu, D. D.; Lin, J.; Zhang, Q.; Lu, J. N.; Wang, X. Y.; Wang, Y. W.; Bu, F.; Ding, L. F.; Wang, L.*; Wu, T.*Chem. Mater. 2015, 27, 4099-4104.[73] Tuning Efficiency of Multi-Step Energy Transfer in Host-Guest Antennae System based on Chalcogenide Semiconductor Zeolite through Acidification and Solvation of GuestsHu, D. D.; Wang, L.; Lin, J.; Bu, F.; Wu, T.*J. Mater. Chem. C 2015, 3, 11747-11753.2014[72] Atomically Precise Doping of Mono-manganese Ion into Coreless Supertetrahedral Chalcogenide Nanocluster Inducing Unusual Red Shift in Mn2+ EmissionLin, J.; Zhang, Q.; Wang, L.; Liu, X. C.; Yan, W. B.; Wu, T.*; Bu, X.*; Feng, P.* J. Am. Chem. Soc. 2014, 136, 4769-4779.2013[71] Monocopper Doping in Cd-In-S Supertetrahedral Nanocluster via Two-step Strategy and Enhanced Photoelectric ResponseWu, T.*; Zhang, Q.; Hou, Y.; Wang, L.; Mao, C.; Zheng, S. T.; Bu, X.; Feng, P.* J. Am. Chem. Soc. 2013, 135, 10250-10253.[70] Selective Anion Exchange with Nanogated Isoreticular Positive Metal-Organic FrameworksZhao, X.; Bu, X.*; Wu, T.; Zheng, S. T.; Wang, L.; Feng, P. Nature Comm. 2013, 4:2344 doi:10.1038[69] Co-Assembly between the Largest and the Smallest Metal Chalcogenide Supertetrahedral ClustersWang, L.; Wu, T.; Bu, X.*; Zhao, X.; Zuo, F.; Feng, P.* Inorg. Chem. 2013, 52, 2259-2261.[68] Integration of Supertetrahedral Cluster with Reduced Graphene Oxide Sheets for Enhanced Photostability and Photoelectrochemical PropertiesHou, Y.; Wu, T.; Wang, L.; Feng, P.* Sci. China. Chem. 2013, 56, 423-427.Prior to Soochow University2012[67] Superbase-Route to Supertetrahedral Chalcogenide ClustersWu, T.; Bu, X.; Liao, P.; Wang, L.; Zheng, S. T.; Ma, R.; Feng, P.* J. Am. Chem. Soc. 2012, 134, 3619-3622.[66] Single-Walled Polytetrazolate Metal-Organic Channels with High Density of Open Nitrogen-Donor Sites and Gas UptakeLin, Q.; Wu, T.; Zheng, S. T.; Bu, X.; Feng, P.* J. Am. Chem. Soc. 2012, 134, 784-787.[65] Development of Composite Inorganic Building Blocks for Metal-Organic FrameworksZheng, S.; Wu, T.; Chou, C. T.; Fuhr, A.; Feng, P.*; Bu, X.* J. Am. Chem. Soc.2012, 134, 4517-4520.[64] Mimicking Zeolite to Its Core: Porous Sodalite Cages as Hanger for Pendent Trimeric M3(OH)Clusters (M = Mg, Mn, Co, Ni, Cd)Zheng, S.; Wu, T.; Zuo, F.; Chou, C. T.; Feng, P.*; Bu, X.* J. Am. Chem. Soc. 2012, 134, 1934-1937.[63] Generalized Synthesis of Zeolite-Type Metal-Organic Frameworks Encapsulating Immobilized Transition Metal ClustersZheng, S.; Mao, C.; Wu, T.; Lee, S.; Feng, P.*; Bu, X.* J. Am. Chem. Soc. 2012, 134, 11936-11939.[62] Two Zeolite-Type Frameworks in One MOF with Zn24@Zn104 Cube-in-Sodalite ArchitectureBu, F.; Lin, Q.; Zhai, Q.; Wang, L.; Wu, T.; Zheng. S. T.; Bu, X.*; Feng, P.* Angew. Chem. Int. Ed. 2012, 51, 8538-8541.[61] Assembly of Super-Supertetrahedral Metal-Organic Clusters into Hierarchical Porous Cubic FrameworkWang, L; Morales, J.; Wu, T.; Zhao, X.; Beyermann, W. P.*; Bu, X.*; Feng, P.* Chem. Commun. 2012, 48, 7498-7500.[60] High CO2 and H2 Uptake in an Anionic Porous Framework with Amino-Decorated Polyhedral CagesZhai, Q.; Lin, Q.; Wu, T.; Wang, L.; Zheng, S. T.; Bu, X.; Feng, P.* Chem. Mater. 2012, 24, 2624-2626.[59] Lithium Cubane Clusters as Tetrahedral, Square Planar, and Linear Nodes for Supramolecular AssembliesZhao, X.; Wu, T.; Bu, X.; Feng, P.* Dalton Trans. 2012, 41, 3902-3905.[58] A Twelve-Connected Porous Framework Built from Rare Linear Cadmium Tricarboxylate PentamersLin, Q.; Wu, T.; Bu, X.; Feng, P.* Dalton Trans. 2012, 41, 3620-3622.[57] Induction of Trimeric [Mg3(OH)(CO2)6] in a Porous Framework by a Desymmetrized Tritopic LigandZhai, Q.; Lin, Q.; Wu, T.; Zheng, S. T.; Bu, X.; Feng, P.* Dalton Trans. 2012, 41, 2866-2868.2011[56] A Large Indium Sulfide Supertetrahedral Cluster Built from Integration of ZnS-Like Tetrahedral Shell with NaCl-Like Octahedral CoreWu, T.; Zuo, F.; Wang, L.; Bu, X.; Zheng, S. T.; Ma, R.; Feng, P.* J. Am. Chem. Soc. 2011, 133, 15886-15889.[55] Phase Selection and Site-Selective Distribution by Tin and Sulfur in Supertetrahedral Zinc Gallium SelenidesWu, T.; Bu, X.; Zhao, X.; Khazhakyan, R.; Feng, P.* J. Am. Chem. Soc. 2011, 133, 9616-9625.[54] Three-Dimensional Covalent Co-Assembly between Inorganic Supertetrahedral Clusters and ImidazolatesWu, T.; Khazhakyan, R.; Wang, L.; Bu, X.; Zheng, S. T.; Chau, V.; Feng, P.* Angew. Chem. Int. Ed. 2011, 50, 2536-2539.[53] Multi-Component Self-Assembly of a Nested Co24@Co48 Metal Organic Polyhedral FrameworkZheng, S. T.; Wu, T.; Irfanoglu, B.; Feng, P.*; Bu, X* Angew. Chem. Int. Ed. 2011, 50, 8034-8037.[52] Porous Indium-Organic Frameworks Built from Super-Trimeric and Elusive Dimeric Clusters: Systematization of Framework Building BlocksZheng, S. T.; Bu, J. T., Wu, T.; Chou, C.; Feng, P.*; Bu, X.* Angew. Chem. Int. Ed. 2011, 50, 8858-8862.[51] Cooperative Assembly of 3-Ring-Based Zeolite-Type Metal-Organic Frameworks and Johnson-Type DodecahedraZheng, S. T.; Zuo, F.; Wu, T.; Irfanoglu, B.; Chou, C.; Nieto, R. A.; Feng, P.; Bu, X.* Angew. Chem. Int. Ed. 2011, 50, 1849-1852.[50] Synthesis and Photocatalytic Properties of a New Heteropolyoxoniobate Compound: K10[Nb2O2(H2O)2][SiNb12O40]·2H2OZhang, Z.; Lin, Q.; Kurunthu, D.; Wu, T.; Zuo, F.; Zheng, S. T.; Bardeen, C. J.; Bu, X., Feng, P.* J. Am. Chem. Soc. 2011, 133, 6934-6937.[49] A Zeolitic Porous Lithium Organic Framework Constructed from Cubane ClustersZhao, X.; Wu, T.; Zheng, S. T.; Wang, L.; Bu, X.*, Feng, P.* Chem. Commun. 2011, 47, 5536-5538.[48] A Chiral Tetragonal Magnesium-Carboxylate Framework with Nanotubular ChannelsLin, Q.; Wu, T.; Zheng, S. T.; Bu, X.; Feng, P.* Chem. Common. 2011, 47, 11852-11854.[47] A Nine-Connected Mixed-Ligand Nickel-Organic Framework and its Gas Sorption PropertiesJiang, G.; Wu, T.; Zheng, S. T.; Zhao, X.; Lin, Q.; Bu, X.; Feng, P.* Crystal Growth & Design 2011, 11, 3713-3716.[46] A Mixed Ligand Route for Construction of Tetrahedrally Coordinated Porous Lithium FrameworksZhao, X.; Wu, T.; Bu, X.; Feng, P.* Dalton Trans. 2011, 40, 8072-8074.2010[45] Largest Molecular Clusters in Supertetrahedral Tn SeriesWu, T.; Wang, L.; Bu, X.; Chau, V., Feng, P.* J. Am. Chem. Soc. 2010, 132, 10823-10831.[44] Self-Similarity in Metal Chalcogenide Nanocluster Chemistry: Assembly of Supertetrahedral T5 Copper-Indium Chalcogenide Clusters into Super-Supertetrahedron of Infinite OrderWang, L.; Wu, T.; Zuo, F.; Zhao, X.; Bu, X.; Feng, P.* J. Am. Chem. Soc. 2010, 132, 3283-3285.[43] Porous Metal Carboxylate Boron Imidazolate Frameworks (MC-BIFs)Zheng, S.; Wu, T.; Zhang, J.; Chow, M.; Nieto, R., Feng, P.*; Bu, X.* Angew. Chem. Int. Ed.2010, 49, 5362-5366.[42] Self-doped Ti3+ Enhanced Photocatalyst for Hydrogen Production Under Visible-lightZuo, F.; Wang, L.; Wu, T.; Zhang, Z.; Borchardt, D.; Feng, P.* J. Am. Chem. Soc. 2010, 132, 11856-11857.[41] A Tale of Three Carboxylates: Cooperative Asymmetric Crystallization of Three-Dimensional Microporous Framework from Achiral PrecursorsZhang, J.; Chen, S.; Nieto, R. A.; Wu, T.; Feng, P.; Bu, X.* Angew. Chem. Int. Ed. 2010, 49, 1267-1270.[40] Pore Space Partition and Charge Separation in Cage-within-Cage Indium-Organic Frameworks with High CO2 UptakeZheng, S.; Bu, J. T.; Li, Y.; Wu, T.; Zuo, F.; Feng, P.; Bu, X.* J. Am. Chem. Soc. 2010, 132, 17062-7064.[39] Urothermal Synthesis of Crystalline Porous MaterialsZhang, J.; Bu, J.; Chen, S.; Wu, T.; Zheng, S.; Chen, Y.; Nieto, R., Feng, P.; Bu, X.* Angew. Chem. Int. Ed. 2010, 49, 8876-8879.[38] Porous Lithium Imidazolate Frameworks Constructed with Charge-Complementary LigandsZheng, S.; Li, Y.; Wu, T.; Nieto, R., Feng, P.; Bu, X.* Chem. Eur. J. 2010, 16, 13035-13040.[37] Three-Dimensional Photoluminescent Frameworks Constructed from Size-Tunable CuI ClustersZhang, Y.; Wu, T.; Dou, T.; Liu, R.; Bu, X.; Feng, P.* Crystal Growth & Design 2010, 10, 2047-2049.[36] Hydrogen-bonded Boron Imidazolate FrameworksZhang, J.; Wu, T.; Feng, P.; Bu, X.* Dalton Trans. 2010, 39, 1702-1704.[35] Zinc(II)-Boron(III)-Imidazolate Framework (ZBIF) with Unusual Pentagonal Channels Prepared from Deep Eutectic SolventChen, S.; Zhang, J.; Wu, T.; Feng, P.; Bu, X.* Dalton Trans. 2010, 39,697-699.2009[34] Synthetic Control of Selenide Supertetrahedral Clusters and Three-Dimensional Co-assembly by Charge-Complementary Metal CationsWu, T.; Wang, X. Q.; Bu, X.; Zhao, X.; Wang, L.; Feng, P.* Angew. Chem. Int. Ed. 2009, 48, 7204 -7207.[33] Zeolite RHO-Type Net with the Lightest ElementsWu, T.; Zhang, J.; Zhou, C.; Wang, L.; Bu, X. *; Feng, P.* J. Am. Chem. Soc. 2009, 131, 6111-6113.[32] Zeolitic Boron Imidazolate FrameworksZhang, J.++; Wu, T.++; Zhou, C.; Chen, S.; Feng, P.*; Bu, X.* Angew. Chem. Int. Ed. 2009, 48, 2542-2545. [++These authors contributed equally to this work.][31] Variable Lithium Coordination Modes in Two- and Three-Dimensional Lithium Boron Imidazolate FrameworksWu, T.; Zhang, J.; Bu, X.*; Feng, P.* Chem. Mater. 2009, 21, 3830-3837.[30] Versatile Structure-Directing Roles of Deep-Eutectic Solvents and Their Implication in the Generation of Porosity and Open Metal Sites for Gas StorageZhang, J; Wu, T.; Chen, S. M.; Feng, P.; Bu, X.* Angew. Chem. Int. Ed. 2009, 48, 3486-3490.[29] Multi-Route Synthesis of Porous Anionic Frameworks and Size-Tunable Extra-framework Organic-Cation-Controlled Gas Sorption PropertiesChen, S.; Zhang, J.; Wu, T.; Feng, P.*; Bu, X.* J. Am. Chem. Soc. 2009, 131,16027-16029.2008[28] New Zeolitic Imidazolate Frameworks: From Unprecedented Assembly of Cubic Clusters to Ordered Cooperative Organization of Complementary LigandsWu, T.; Bu, X.; Zhang, J.; Feng, P.* Chem. Mater. 2008, 20, 7377-7382.[27] A New Zeolitic Topology with Sixteen-membered Ring and Multidimensional Large Pore ChannelsWu, T.; Bu, X.; Liu, R.; Lin, Z.; Zhang, J.; Feng, P.* Chem. Eur. J. 2008, 14, 7771-7773.[26] Anionic CunIn Cluster-based Architectures Induced by in- situ Generated N-alkylated Cationic triazolium saltsWu, T.; Li, M.; Li, D.*; Huang, X. C.* Crystal Growth & Design 2008, 8, 568-574.[25] Three-Dimensional Open Framework Built from Cu-S Icosahedral Clusters and Its Photocatalytic PropertyZhang, Z; Zhang, J.; Wu, T.; Bu, X.; Feng, P.* J. Am. Chem. Soc. 2008, 130, 15238-15239.[24] Tunable Redox-responsive Hybrid Nanogated EnsemblesLiu, R.; Zhao, X.; Wu, T.; Feng, P.* J. Am. Chem. Soc. 2008, 130, 14418-14419.[23] Homochiral Crystallization of Microporous Framework Materials from Achiral Precursors by Chiral CatalysisZhang, J; Chen, S.; Wu, T.; Feng, P.; Bu, X.* J. Am. Chem. Soc. 2008, 130, 12882-12883.[22] A Rare (3, 4)-Connected Chalcogenide Superlattice and Its Photoelectronic EffectZhang, Q.; Liu, Y.; Bu, X.; Wu, T.; Feng, P.* Angew. Chem. Int. Ed. 2008, 47,113-116.[21] In Situ Synthesis of Tetradentate Dye for Construction of Three-Dimensional Homochiral PhosphorZhang, J.; Wu, T.; Feng, P.; Bu, X.* Chem. Mater. 2008, 20, 5457-5459.[20] Ion Pair Charge-Transfer Salts Based on Metal Chalcogenide Clusters and Methyl Viologen CationsZhang, Q.; Wu, T.; Bu, X.; Tri, T.; Feng, P.* Chem. Mater. 2008, 20, 4170-4172.[19] Solvothermal Conversion of Discrete Cubic Cadmium Thiolate Cluster into Supertetrahedral Cluster Decorating Quartz-type Chiral SuperlatticeZhang, Q.; Lin, Z.; Bu, X.; Wu, T.; Feng, P.* Chem. Mater. 2008, 20, 3239-3241.[18] Organization of Tetrahedral Chalcogenide Clusters Using Tetrahedral Quadridentate LinkerZhang, Q.; Bu, X.; Lin, Z.; Wu, T.; Feng, P.* Inorg. Chem. 2008, 47, 9724-9726.2007[17] Chiral Semiconductor Frameworks from Cadmium Sulfide ClustersZhang, Q; Bu, X.; Zhang, J.; Wu, T.; Feng, P.* J. Am. Chem. Soc. 2007, 129, 8412-8413.[16] Metal-directed Supramolecular Architectures: From Mononuclear to 3D Frameworks Based on in-situ Tetrazole Ligand SynthesisLi, Z.; Li, M.; Zhou, X. P.; Wu, T.; Li, D.*; Ng, S. W. Crystal Growth & Design 2007, 7, 1992-1998.Prior to UCR2006[15] A Coordination Polymer Containing Inorganic Buckybowl AnaloguesWu. T.; Chen, M.; Li, D.* Eur. J. Inorg. Chem. 2006, 2132-2135.[14] Effect of Substituted Groups of Ligand on Construction of Topological Networks: In situ Generated Silver(I) Tetrazolate Coordination PolymersWu, T.; Zhou, R.; Li, D.* Inorg. Chem. Commun. 2006, 9, 341-345.[13] Design and Solvothermal Synthesis of Luminescent Copper(I)-pyrazolate Coordination Oligomer and Polymer FrameworksHe, J.; Yin, Y. G.; Wu, T.; Li, D.*; Huang, X. C. Chem. Commun. 2006, 2845-2847.[12] Increasing Structure Dimensionality of Copper(I) Complexes by Varying the Flexible Thioether Ligand Geometry and Counter anionsPeng, R.; Li, D.*; Wu, T.; Ng, S. W. Inorg. Chem. 2006, 45, 4035-4046.[11] Cu(I) or Cu(I)-Cu(II) Mixed-valence Complexes of 2,4,6-tri(2-pyridyl)-1,3,5-triazine: Syntheses, Structures, and Theoretical Study of the Hydrolytic Reaction MechanismZhou, X. P.; Li, D.*; Zheng, S. L.; Zhang, X. J.; Wu, T.Inorg. Chem. 2006, 45, 7119-7125.[10] Syntheses of Supramolecular CuCN Complexes by Decomposing CuSCN: a General Route to CuCN Coordination Polymers?Zhou, X. P.; Li, D.*; Wu, T.; Zhuang, X. J. Dalton Trans. 2006, 2435-2443.[9] Hydrothermal Synthesis of Copper Complexes of 4’-pyridylTerpyridine: From Discrete Monomer to Zigzag Chain PolymerFeng, H.; Zhou, X. P.; Wu, T.; Li, D.*; Yin, Y. G.; Ng, S. W. Inorg. Chim. Acta 2006, 359, 4027-4035.[8] Structural Variations and Spectroscopic Properties of Copper(I) Complexes with Bis(schiff base) LigandsZhou, X. H.; Wu, T.; Li, D.* Inorg. Chim. Acta 2006, 359, 1442-1448.2005[7] Two Novel Nanoporous Supramolecular Architectures Based on Copper(I) Coordination Polymers with Uniform (8,3) and (8210) nets: In situ Formation of Tetrazolate LigandsWu, T.; Yi, B. H.; Li, D.* Inorg. Chem. 2005, 44, 4130-4132.[6] Solvent Control in the Hydrothermal Synthesis of Two Copper(I) Iodide-benzimidazole Coordination PolymersWu; T.; Li, D.*; Ng, S. W. CrystEngcomm 2005, 7, 514-518.[5] Twelve-connected Net with Face-centered Cubic Topology: A Coordination Polymer Based on [Cu12(μ4-SCH3)6]6+ Clusters and CN- LinkersLi, D.*; Wu, T.; Zhou, X. P.; Zhou, R.; Huang, X. C. Angew. Chem. Int. Ed. 2005, 44, 4175-4178.[4] Transformation of Inorganic Sulfur into Organic Sulfur: A Novel Photoluminescent 3-D Polymeric Complex Involving Ligands in situ FormationLi, D.*; Wu, T.Inorg. Chem. 2005, 44,1175-1177.[3] A Chiral Coordination Polymer Containing Copper(I) Iodide Layer Composed of Intersecting [CuI]n HelicesPeng, R.; Wu, T.; Li, D.* CrystEngcomm 2005, 7, 595-598.2004[2] Synthesis, Crystal Structure and Photoluminescence of a 2D Supramolecular Hydrogen Bonding Network Complex [Cu(HIm)(PPh3)2I]Wu, T.; Li, D.*; Luo, Y. F.; Feng, Q.; Huang, X. C. Chinese J. of Inorg. Chem. 2004, 20, 951-954.2003[1] Trinuclear Silver(I) Complex with Benzimidazole (Hbim) and Triphenylphosphine [Ag3(μ2-bim)3(PPh3)5]: Synthesis, Crystal Structure and PhotoluminescenceWu, T.; Li, D.*; Feng, X. L.; Cai, J. W. Inorg. Chem. Commun. 2003, 6, 886-890. 荣誉奖励 国家级青年人才 社会职务 《Chinese Chemical Letters》(中国化学快报)第五届编委会委员 (2021/01 - 2022/06)

杨永