林怀俊教师主页|暨南大学先进耐磨蚀及功能材料研究院简历|林怀俊招生信息|林怀俊专利信息

教师主页移动版

主页 > 广东省 > 暨南大学

林怀俊

姓名 林怀俊
教师编号 28666
性别
学校 暨南大学
部门 先进耐磨蚀及功能材料研究院
学位 博士
学历 先进耐磨蚀及功能材料研究院
职称 博士
联系方式 【发送到邮箱】
邮箱 【发送到邮箱】
人气
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳

导航 个人简介 学习经历 工作经历 研究方向 主要论文 主要著作 承担课题,个人信息 姓名: 林怀俊 部门: 先进耐磨蚀及功能材料研究院 直属机构: 化学与材料学院 性别: 男 职称: 教授 学位: 博士 毕业院校: 华南理工大学 电子邮箱: hjlin@jnu.edu.cn 联系方式 hjlin@jnu.edu.cn 个人简介 林怀俊,暨南大学教授,广东省自然科学基金杰出青年项目获得者。本科毕业于华南理工大学,保送研究生,华南理工大学和中科院物理所联合培养博士,日本九州大学博士后。主要研究储氢和制氢合金。主持国家自然科学基金面上和青年项目、广东省和广州市自然科学基金等科研项目,曾获广东省科技进步二等奖、中国有色金属工业科技进步一等奖等科技奖项。发表论文90多篇,授权发明专利10件。 学习经历 2009.9-2014.12,华南理工大学,材料科学与工程学院,工学博士(硕博连读)2013.10-2014.9,九州大学(日本),工学府机械系,国家公派研究生2011.3-2013.7,中国科学院物理研究所,极端条件物理实验室,联合培养2005.9-2009.7,华南理工大学,机械与汽车工程学院,工学学士 工作经历 2023.10至今,暨南大学化学与材料学院/先进耐磨蚀及功能材料研究院,教授2017.05-2023.10,暨南大学,先进耐磨蚀及功能材料研究院,副研究员;2015.3-2017.4,南京工业大学,材料科学与工程学院,讲师;2015.4-2016.9,九州大学(日本)氢能研究中心、WPI-I2CNER,博士后研究员; 研究方向 氢能应用相关金属材料,重点关注非晶态合金的储氢、制氢、催化性能 主要论文 [1]  Jian X, Zhang W, Yang Y, Li Z, Pan H, Gao Q, Lin H-J. Amorphous Cu–W Alloys as Stable and Efficient Electrocatalysts for Hydrogen Evolution. ACS Catalysis 2024;14:2816.[2]  Han B, Yu S, Wang H, Lu Y, Lin H-J. Nanosize effect on the hydrogen storage properties of Mg-based amorphous alloy. Scripta Materialia 2022;216:114736.[3]  Wu K, Meng Y, Xu J, Edalati K, Shao H, Li W, Lin H-J. Novel Fe-based nanoglass as efficient noble-metal-free electrocatalyst for alkaline hydrogen evolution reaction. Scripta Materialia 2020;188:135.[4]  Wu K, Chu F, Meng Y, Edalati K, Gao Q, Li W, Lin H-J. Cathodic corrosion activated Fe-based nanoglass as a highly active and stable oxygen evolution catalyst for water splitting. Journal of Materials Chemistry A 2021;9:12152.[5]  Chu F, Han B, Edalati K, Ma J, Meng Y, Wang C, Yang F, Zhang P, Lin H-J. Severe plastic deformed Pd-based metallic glass for superior hydrogen evolution in both acidic and alkaline media. Scripta Materialia 2021;204:114145.[6]  Xu C, Lin H-J, Edalati K, Li W, Li L, Zhu Y. Superior hydrogenation properties in a Mg65Ce10Ni20Cu5 nanoglass processed by melt-spinning followed by high-pressure torsion. Scripta Materialia 2018;152:137.[7]  Lin H-J, Tang J-J, Yu Q, Wang H, Ouyang L-Z, Zhao Y-J, Liu J-W, Wang W-H, Zhu M. Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump. Nano Energy 2014;9:80.[8]  Lin H-J, He M, Pan S-P, Gu L, Li H-W, Wang H, Ouyang L-Z, Liu J-W, Ge T-P, Wang D-P, Wang W-H, Akiba E, Zhu M. Towards easily tunable hydrogen storage via a hydrogen-induced glass-to-glass transition in Mg-based metallic glasses. Acta Materialia 2016;120:68.[9]  Xu C, Lin H-J, Wang Y, Zhang P, Meng Y, Zhang Y, Liu Y, Zhang J, Li L, Shi Q, Li W, Zhu Y. Catalytic effect of in situ formed nano-Mg2Ni and Mg2Cu on the hydrogen storage properties of Mg-Y hydride composites. Journal of Alloys and Compounds 2019;782:242.[10]Shao H, He L, Lin H, Li H-W. Progress and Trends in Magnesium-Based Materials for Energy-Storage Research: A Review. Energy Technology 2018;6:445.[11]Ma Z, Liu J, Zhu Y, Zhao Y, Lin H, Zhang Y, Li H, Zhang J, Liu Y, Gao W, Li S, Li L. Crystal-facet-dependent catalysis of anatase TiO2 on hydrogen storage of MgH2. Journal of Alloys and Compounds 2020;822:153553.[12]Liu J, Ma Z, Liu Z, Tang Q, Zhu Y, Lin H, Zhang Y, Zhang J, Liu Y, Li L. Synergistic effect of rGO supported Ni3Fe on hydrogen storage performance of MgH2. International Journal of Hydrogen Energy 2020;45:16622.[13]Lin H-J, Zhang P, Fang Y-X, Zhao Y-J, Zhong H, Tang J-J. Understanding the Decomposition Mechanisms of LiNH2, Mg(NH2)2, and NaNH2: A Joint Experimental and Theoretical Study. The Journal of Physical Chemistry C 2019;123:18180.[14]Lin H-J, Zhang C, Wang H, Ouyang L, Zhu Y, Li L, Wang W, Zhu M. Controlling nanocrystallization and hydrogen storage property of Mg-based amorphous alloy via a gas-solid reaction. Journal of Alloys and Compounds 2016;685:272.[15]Lin H-J, Matsuda J, Li H-W, Zhu M, Akiba E. Enhanced hydrogen desorption property of MgH2 with the addition of cerium fluorides. Journal of Alloys and Compounds 2015;645:S392.[16]Lin H-J, Lu Y-S, Zhang L-T, Liu H-Z, Edalati K, Révész Á. Recent advances in metastable alloys for hydrogen storage: a review. Rare Metals 2022;41:1797.[17]Lin H-J, Li H-W, Shao H, Lu Y, Asano K. In situ measurement technologies on solid-state hydrogen storage materials: a review. Materials Today Energy 2020;17:100463.[18]Lin H-J, Li H-W, Paik B, Wang J, Akiba E. Improvement of hydrogen storage property of three-component Mg(NH2)2-LiNH2-LiH composites by additives. Dalton Transactions 2016;45:15374.[19]Lin H-J, Li H-W, Murakami H, Akiba E. Remarkably improved hydrogen storage properties of LiNH2-LiH composite via the addition of CeF4. Journal of Alloys and Compounds 2018;735:1017.[20]Lin HJ, Ouyang LZ, Wang H, Zhao DQ, Wang WH, Sun DL, Zhu M. Hydrogen storage properties of Mg–Ce–Ni nanocomposite induced from amorphous precursor with the highest Mg content. International Journal of Hydrogen Energy 2012;37:14329.[21]Li X, Wu D, Zhou Q, Tang R, Zhu Y, Xiao F, Li W, Lin H-J. Improved hydrogen storage properties of low-cost Ti–Cr–V alloys by minor alloying of Mn. International Journal of Hydrogen Energy 2024;50:224.[22]Huang LJ, Wang H, Ouyang LZ, Zhu M, Lin HJ. Decorating crystalline YFe2–xAlx on the Mg60La10Ni20Cu10 amorphous alloy as “hydrogen pump” to realize fast de/hydrogenation. Journal of Materials Science & Technology 2024;173:72.[23]Huang LJ, Wang H, Ouyang LZ, Sun DL, Lin HJ, Zhu M. Achieving fast hydrogenation by hydrogen-induced phase separation in Mg-based amorphous alloys. Journal of Alloys and Compounds 2021;887:161476.[24]Han B, Yu S, Wang H, Lu Y, Cai W, Zhang P, Li W, Lin H-J. Effect of interlayer and deposition temperature on the hydrogen storage properties of amorphous Mg-based thin films. International Journal of Hydrogen Energy 2024;50:84.[25]Chu F, Wu K, Meng Y, Edalati K, Lin H-J. Effect of high-pressure torsion on the hydrogen evolution performances of a melt-spun amorphous Fe73.5Si13.5B9Cu1Nb3 alloy. International Journal of Hydrogen Energy 2021;46:25029.[26]Chu F, Jian X, Edalati K, Yan Y, Ke H, Zhang P, Lin H-J. Nanoscale heterogeneous FeB metallic glass as highly active and stable catalyst for hydrogen evolution. Journal of Alloys and Compounds 2023;960:170964.[27]林怀俊, 黄亮君, 黄建灵. Mg基非晶态储氢合金的研究进展. 中国材料进展 2023;42:1.[28]Yang Z-X, Li X-G, Yao Q-L, Lu Z-H, Zhang N, Xia J, Yang K, Wang Y-Q, Zhang K, Liu H-Z, Zhang L-T, Lin H-J, Zhou Q-J, Wang F, Yu Z-M, Ma J-M. 2022 roadmap on hydrogen energy from production to utilizations. Rare Metals 2022;41:3251.[29]Xu C, Lin H-J, Liu J, Zhang P, Meng Y, Liu Y, Zhang J, Li L, Zhu Y. Improved Hydrogen Absorption/Desorption Properties of MgH2 by Co–Catalyzing of YH2 and Co@C. ChemistrySelect 2019;4:7709.[30]Wu K, Meng Y, Li X, Ma J, Zhang P, Li W, Huo L, Lin H-J. Improved alkaline hydrogen evolution performance of a Fe78Si9B13 metallic glass electrocatalyst by ultrasonic vibrations. Intermetallics 2020;125:106820.[31]Wu K, Cai D, Shao K, Xue T, Zhang P, Li W, Lin H-J. Effect of CeH2.73-CeO2 Composites on the Desorption Properties of Mg2NiH4. Frontiers in Chemistry 2020;8.[32]Lin H-J, Zhu Y-F, Liu Y-N, Li L-Q, Zhu M. Research progress of interactions between amorphous alloys and hydrogen. Acta Physica Sinica 2017;66:176105.[33]Lin H-J, Xu C, Gao M, Ma Z, Meng Y, Li L, Hu X, Zhu Y, Pan S, Li W. Hydrogenation properties of five-component Mg60Ce10Ni20Cu5X5 (X= Co, Zn) metallic glasses. Intermetallics 2019;108:94.[34]Lin H-J, He L, Zhang P, Zhang Z, Pan S, Li W. Tailoring hydrogen storage properties of amorphous Mg65Cu25Y10 alloy via minor alloying addition of Ag. Intermetallics 2018;97:22.[35]Lin HJ, Wang WH, Zhu M. Room temperature gaseous hydrogen storage properties of Mg-based metallic glasses with ultrahigh Mg contents. Journal of Non-Crystalline Solids 2012;358:1387.[36]Lin HJ, Ouyang LZ, Wang H, Liu JW, Zhu M. Phase transition and hydrogen storage properties of melt-spun Mg3LaNi0.1 alloy. International Journal of Hydrogen Energy 2012;37:1145.[37]Li X, Wu D, Zhou Q, Tang R, Xiao F, He L, Li H-W, Zhu Y, Zhang P, Lin H-J. Enhanced cyclic durability of low-cost Ti–V–Cr hydrogen storage alloys by elemental alloying. Materials Chemistry and Physics 2024:129132.[38]Jian X, Li J, He L, Li H-W, Zhang M, Zhang P, Lin H-J. Severe Plastic Deformation for Advanced Electrocatalysts for Electrocatalytic Hydrogen Production. MATERIALS TRANSACTIONS 2023;64:1515.[39]Jian X, Li J, Han B, Chu F, Wu K, Meng Y, Zhang M, Lin H-J. Corroded Fe78Si9B13 amorphous alloy as electrocatalyst for oxygen evolution reaction of water splitting. Journal of Non-Crystalline Solids 2023;603:122117.[40]Chu F, Wu K, Meng Y, You D, Li W, Lin H-J. Nanoporous Amorphous Fe78Si9B13 Alloys for Hydrogen Evolution in Alkaline Media. Journal of Non-Crystalline Solids 2021;566:120831.[41]Shao H, Li H-W, Cheng Y-J, Lin H, He L. Next-Generation Energy Storage Materials Explored by Advanced Scanning Techniques. Scanning 2018;2018:3.[42]Li J, Xu J, Li B, He L, Lin H, Li H-W, Shao H. Advanced SEM and TEM Techniques Applied in Mg-Based Hydrogen Storage Research. Scanning 2018;2018:12.[43]Li J, Li B, Shao H, Li W, Lin H. Catalysis and Downsizing in Mg-Based Hydrogen Storage Materials. Catalysts 2018;8:89.[44]Chen G, Zhang Y, Cheng H, Zhu Y, Li L, Lin H. Effects of two-dimension MXene Ti3C2 on hydrogen storage performances of MgH2-LiAlH4 composite. Chemical Physics 2019;522:178.[45]Li B, Li J, Shao H, Li W, Lin H. Synthesis, Morphology, and Hydrogen Absorption Properties of TiVMn and TiCrMn Nanoalloys with a FCC Structure. Scanning 2018;2018:9. 承担课题 1)  国家自然科学基金面上项目2)  国家自然科学基金青年基金3)  广东省自然科学基金杰出青年基金4)  广东省自然科学基金面上项目5)  广州市科技项目6)  科技部高端外国专家引进计划7)  省重点实验室开放课题8)  中央高校基本业务费 发明专利 1)林怀俊等,铈及化合物在提高氨化物-氢化物体系储氢性能中的应用:ZL201710613093.92)林怀俊等,一种Fe基电解水析氧催化剂及其制备方法:ZL20201157604893)林怀俊等,一种去合金化处理提高非晶合金电解水析氢催化活性的方法:ZL202010056919.84)林怀俊等,一种去塑性变形处理提高非晶合金电解水析氢催化活性的方法:ZL202010046199.75)林怀俊等,一种机械超声处理提高Fe基非晶合金电解水析氢催化活性的方法:ZL202010045941.2 讲授课程 《机械制图》:本科生《固态相变技术》、《固态相变原理》:硕士研究生 社会职务 Rare Metals、Scanning、Frontier in Materials、稀有金属、材料科学与工艺等期刊的青年编委/客座编辑;广东省青年科学家协会会员、广州市青年科技工作者协会理事、广东省材料研究学会青年工作委员会委员、暨南大学科协委员;国家自然科学基金、广东省科技厅、广州市科技局、广州市科协项目评审专家,教育部学位办学位论文评审专家;暨南大学科普教育基地负责人、广州市中学生“英才计划”导师;Adv. Mater, Chem. Mater.,ACS Appl. Mater. Interf.,J. Phys. Chem. C,ACS Omega,J. Mater. Chem. A,Sustain. Energy Fuel,Appl. Phys. Lett.,Sci. Rep.,Adv. Sustain. System,J. Power Sources,Carbon,Int. J. Hydrogen Energy,J. Alloys Compd.,Intermetallics,J. Mater. Sci. Technol.,Emergent Mater.,J. Noncrystal. Solid,Mater. Lett.,Chem. Eng. J.,Chem. Eng. Sci, Results in Chem.,Energy Technol.,Energy Research,Mater. Sci. Eng. B,Mater. Sci. Energy Technol..,Mater. Chem. Phys.,Mater. Charact.,Euro. Phys. J. Plus,J. Nanomaterials,J. Environ. Chem. Eng.,Prog. Nat. Sci. Mater. Int.,J. Phys. Chem. Solids,J. Energy Storage,Polymers,Materials,Chemistryselect,Metal. Mater. Int.,Front. Energy,Front. Bioeng. Biotechnol.,Fron Mater.,Cleaner Eng. Technol.,Mater. Today Common.,Mater. Today Adv.,Adv. Mater. Lett.,Trans. Nonferr. Metal Soc. China,Acta Metal. Sinica.,Solid State Ionics,中国物理B,物理学报,中国材料进展等国内外50多个学术期刊的审稿人/仲裁人;

杨永