吴文泰
姓名 | 吴文泰 |
教师编号 | 28590 |
性别 | 男 |
学校 | 暨南大学 |
部门 | 信息科学技术学院 |
学位 | 博士 |
学历 | 信息科学技术学院 |
职称 | 博士 |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
导航
个人简介
学习经历
工作经历
研究方向
主要论文
主要著作
承担课题,个人信息
姓名: 吴文泰
部门: 信息科学技术学院
直属机构: 计算机科学系
性别: 男
职称: 副教授
学位: 博士
毕业院校: 英国华威大学
电子邮箱: wentaiwu@jnu.edu.cn
办公地址: 南海楼413
联系方式
wentaiwu@jnu.edu.cn
个人简介
吴文泰,男,博士(Ph.D. in Computer Science),副教授。主要研究兴趣包括分布式系统、边缘智能、可持续计算和协同机器学习。在相关学术领域发表期刊和会议论文20余篇,获IEEE Computer Society 2021年最佳论文奖第二名(best paper award runner-up),2020年广东省科技进步二等奖;参编《Data Center Handbook: Plan, Design, Build, and Operations of a Smart Data Center》(2nd Edition)等英文专著2本,担任IEEE TPDS、TMC、TBD、TSUSC等高影响力期刊和NeurIPS、ICML等顶级会议的审稿人,《计算机科学》期刊“联邦学习技术及前沿应用”专栏特邀编审。被列入2023年度分布式计算领域复合引用指标全球前2%科学家(top 2% scientist, single year,2023,by Stanford)。个人主页:https://wingter562.github.io/wentai_homepage/
学习经历
2011-2015,华南理工大学,工学学士2015-2018,华南理工大学,工学硕士2018-2022,英国华威大学(University of Warwick),博士(CSC国家公派博士留学生)
工作经历
2022-2023,鹏城实验室,新型网络研究部产业互联网所,助理研究员2024至今,暨南大学,信息科学技术学院计算机科学系,副教授
研究方向
分布式系统、协同计算、可持续计算、协同机器学习
主要论文
部分成果列表:[] Lin, W., Wang, S., Wu, W.*, Li, D., & Zomaya, A. (2023) HybridAD: A Hybrid Model-driven Anomaly Detection Approach for Multivariate Time Series. IEEE Transactions on Emerging Topics in Computational Intelligence. Vol.8, no.1, pp.866-878. DOI: 10.1109/TETCI.2023.3290027. [JCR-Q2, IF 5.3][] Wu, W., He, L.*, Lin, W.*, & Maple, C. (2023) FedProf: Selective Federated Learning based on Distributional Representation Profiling. IEEE Transactions on Parallel and Distributed Systems (TPDS). Vol. 34, no. 6, pp. 1942-1953. DOI: 10.1109/TPDS.2023.3265588. [CCF-A, JCR-Q1, IF 5.3][] Lin, W., Xiong, C.*, Wu, W.*, Shi, F., Li, K., & Xu, M. (2022). Performance Interference of Virtual Machines: A Survey. ACM Computing Surveys. Vol. 55, no. 12, pp. 1-37 [JCR-Q1, IF 16.6][] Wu, W., He, L.*, Lin, W., & Mao, R. (Jul, 2021) Accelerating Federated Learning over Reliability-Agnostic Clients in Mobile Edge Computing Systems. IEEE Transactions on Parallel and Distributed Systems (TPDS). vol. 32, no.7, pp. 1539-1551. [CCF-A, JCR-Q1, IF 5.3][] Wu, W., He, L.*, Lin, W., Mao, R., & Jarvis, S. (Jun, 2021). SAFA: a Semi-Asynchronous Protocol for Fast Federated Learning with Low Overhead. IEEE Transactions on Computers (TC). vol. 70, no.5, pp. 655-668. [CCF-A, JCR-Q2, IF 3.7, IEEE Computer Society 2021 Best Paper Award Runner-up (from IEEE TC)][] Wu, W., He, L.*, Lin, W. et al. (Sep, 2022). Developing an Unsupervised Real-time Anomaly Detection Scheme for Time Series with Multi-seasonality. IEEE Transactions on Knowledge and Data Engineering (TKDE). Vol. 34, no. 9, pp. 4147-4160. [CCF-A, JCR-Q1, IF 8.9][] Wu, W., Lin, W.*, He, L., Wu, G., & Hsu, C. (Apr, 2021). A Power Consumption Model for Cloud Servers Based on Elman Neural Network. IEEE Transactions on Cloud Computing (TCC). Vol. 9, no. 4, pp. 1268-1277. [JCR-Q1, IF 6.5][] Lin, W., Wu, W.*, & He, L.(Mar, 2022). An On-line Virtual Machine Consolidation Strategy for Dual Improvement in Performance and Energy Conservation of Server Clusters in Cloud Data Centers. IEEE Transactions on Services Computing (TSC). Vol. 15, no. 2, pp. 766-777. [CCF-A, JCR-Q1, IF 8.1][] Wu, W., Lin, W.*, Hsu C., & He, L. (Sep, 2018). Energy-Efficient Hadoop for Big Data Analytics and Computing: A Systematic Review and Research Insights. Future Generation Computer Systems (FGCS). vol. 86, pp. 1351-1367. DOI: 10.1016/j.future.2017.11.010. [JCR-Q1, IF 7.5][] Lin, W.*, Wu, W.*, Wang, H., Wang, J. & Hsu, C. (Sep, 2018). Experimental and Quantitative Analysis of Server Power Model for Cloud Data Centers. Future Generation Computer Systems (FGCS). Vol. 86, no. 5, pp. 940-950. DOI: 10.1016/j.future.2016.11.034. [JCR-Q1, IF 7.5][] Wu, W., Lin, W.*, & Peng, Z. (Oct, 2017). An intelligent power consumption model for virtual machines under CPU-intensive workload in cloud environment. Soft Computing, vol. 21, no. 19, pp. 5755–5764. DOI: 10.1007/s00500-016-2154-6. [JCR-Q2, IF 4.1][] Lin, W., Wu, W.*, & Wang, J. (May, 2016). A heuristic task scheduling algorithm for heterogeneous virtual clusters. Scientific Programming, vol. 2016, pp. 1-10. DOI:10.1155/2016/7040276. [JCR Q3, IF 1.672][] 林伟伟, 吴文泰*. 面向云计算环境的能耗测量和管理方法. 软件学报, 2016, 27(4): 1026 -1041. DOI: 10.13328/j.cnki.jos.005022. [EI, IF 3.644][] Wu, Y. & Wu, W*. (2015). Modeling Topic Popularity Distribution and Evolution in an Online Discussion Forum. Journal of Computational Information Systems (ISSN: 1553-9105), vol. 11, no. 18, pp. 6797-6810. [EI]*[] Shi, F., Hu, C., Lin, W.*, Fan, L., Huang, T., & Wu, W. (2022). VFedCS: Optimizing Client Selection for Volatile Federated Learning. IEEE Internet of Things Journal. 2022. DOI: 10.1109/JIOT.2022.3172113. [JCR-Q1, IF 10.238][] Huang, T., Lin, W.*, Wu, W, He, L., Li, K., & Zomaya, A.Y. (2021) An Efficiency-boosting Client Selection Scheme for Federated Learning with Fairness Guarantee. IEEE Transactions on Parallel and Distributed Systems (TPDS). Vol. 32, pp. 1552-1564. DOI: 10.1109/TPDS.2020.3040887. [CCF-A, JCR-Q1, IF 3.757]
主要著作
· Wu, W., Lin, W., & Li, K. (2023). Energy Efficiency of Servers in Data Centers. Encyclopedia of Sustainable Technologies, 2nd Edition. Amsterdam, Netherlands: Elsevier. [ISBN: 9780124095489] |