史建清教师主页|南方科技大学统计与数据科学系简历|史建清招生信息|史建清专利信息

教师主页移动版

主页 > 广东省 > 南方科技大学

史建清

姓名 史建清
教师编号 20616
性别 发明专利4999代写全部资料
学校 南方科技大学
部门 统计与数据科学系
学位 发明专利包写包过 特惠申请
学历 版权登记666包过 代写全部资料
职称 教授
联系方式 【发送到邮箱】
邮箱 【发送到邮箱】
人气
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳

教师主页 科研项目 研究领域 学术成果 教学 科研分享 新闻动态 疼痛医学中心 成果介绍 软件 毕业去向 加入我们 联系我们 史建清 教授 统计与数据科学系 史建清教授,南方科技大学统计与数据科学系教授。曾任英国纽卡斯尔大学(Newcastle University)统计学教授,英国国家艾伦图灵研究院图灵研究员。主要研究方向包括函数型数据分析,生物医学统计,缺失数据分析等。在国际学术刊物上发表高水平学术论文多篇,包括统计顶级期刊 JRSSB, JASA, Biometrika和Biostatistics。曾任英国皇家统计协会《应用统计》副主编,Guest AE for JRSS discussion paper,英国纽卡斯尔大学云计算和大数据研究培训中心副主任。曾获邀任剑桥大学世界最顶级数学学院之一的牛顿学院访问研究员,获美国统计协会非参数统计分会年度最佳论文奖,2012年获英国 Wellcome trust Health Innovation Challenge Fund,共计210万英镑。2011年在著名统计学出版社Chapman & Hall 出版专著:Gaussian Process Regression Analysis for Functional Data。 个人简介 个人简介 研究领域 函数型数据分析,生物医学统计,复杂数据分析,不完全数据分析 教学 数理统计 学术成果 查看更多 1. Rehman, R. Z. U., Del Din, S., Guan, Y., Yarnall, A. J., Shi, J. Q. and Rochester, L. (2019). Selecting Clinically Relevant Gait Characteristics for Classification of Early Parkinson’s Disease: A Comprehensive Machine Learning Approach. Scientific Reports. https://www.nature.com/articles/s41598-019-53656-7 2. Rehman, R. Z. U., Del Din, S., Shi, J. Q., Galna, B., Lord, S., Yarnall, A. J., Guan, Y. and Rochester, L. (2019). Comparison of Walking Protocols and Gait Assessment Systems for Machine Learning-Based Classification of Parkinson’s Disease. Sensors. https://www.mdpi.com/1424-8220/19/24/5363 3. Rehman, R. Z. U., Buckley, B., Mico-Amigo, M. E., Kirk, C., Dunne-Willows, M., Mazza, C., Shi, J. Q., Alcock, L., Rochester, L. and Del Din, S. (2019). Accelerometry- based digital gait characteristics for classification of Parkinson’s disease: what counts? IEEE Open Journal of Engineering in Medicine and Biology (accepted). 4. Sofro, A., Shi, J. Q. and Cao, C. (2019) Regression Analysis for Multivariate Process Data of Counts using Convolved Gaussian Processes. Journal of Statistical Planning and Inference (in press) arXiv: 1710.01523. 5. Zhanfeng Wang, Kai Lia, Jian Qing Shi (2019). A robust estimation for the extended t- process regression model. Statistics and Probability Letters. Available on line now: https://www.sciencedirect.com/science/article/pii/S016771521930272X?dgcid=coauthor. 6. Wang, Z., Ding, H, Chen, Z and Shi, J. Q. (2019). Nonparametric Random Effect Functional Regression Model with Gaussian process priors. Statistica Sinica. Available on line now: http://www3.stat.sinica.edu.tw/ss_newpaper/SS-2018-0296_na.pdf 7. Yin, P. and Shi, J. Q. (2019) Simulation-based Sensitivity Analysis for Non-ignorable Missing Data. Statistical Methods in Medical Research, Vol. 28(1) 289–308. http://journals.sagepub.com/doi/pdf/10.1177/0962280217722382. arXiv:1501.05788. 8. Cheng, Y., Shi, J. Q. and Eyre, J. (2019) Nonlinear Mixed-effects Scalar-on-function Models and Variable Selection for Kinematic Upper Limb Movement Data. arXiv:1605.06779 Statistics and Computing, Available on line now. https://link.springer.com/article/10.1007%2Fs11222-019-09871-3 9. Zeng, P., Shi, J. Q. and Kim, W-S (2019) Simultaneous registration and clustering for multidimensional functional data. arXiv:1711.04761. J. of Computational and Graphical Statistics. Available on line now https://www.tandfonline.com/doi/full/10.1080/10618600.2019.1607744. 10. Xu, P, Lee, Y., Shi, J.Q. and Eyre, J. (2019) Automatic Detection of Significant Areas for Functional Data with Directional Error Control. arXiv: 1504.08164. Statistics in medicine, https://doi.org/10.1002/sim.7968. Available online now. https://onlinelibrary.wiley.com/doi/full/10.1002/sim.7968 11. Halloran, S., Tang, L., Guan, Y., Shi, J. Q., and Eyre, J. (2019). Remote monitoring of stroke patients’ rehabilitation using wearable accelerometers. In Proceedings of the 2019 ACM International Symposium on Wearable Computers. ACM. 12. Shi, J. Q. (2018). How Do Statisticians Analyse Big Data – Our story. Statistics and Probability Letters. 136,130-133. https://doi.org/10.1016/j.spl.2018.02.043. 13. Cao, C., Chen, M., Wang, Y and Shi, J. Q. (2018) Heteroscedastic replicated measurement error models under asymmetric heavy-tailed distributions. Computational Statistics, 33, 319-338. 14. Kim, W-S, Zeng, P., Shi, J. Q., Lee, Y. and Paik, N-J. (2017) Automatic tracking of hyoid bone motion from videofluoroscopic swallowing study with automatic smoothing and segmentation. PLOS ONE, https://doi.org/10.1371/journal.pone.0188684. 15. Cao, C., Wang, Y., Shi, J. Q. and Lin, J. (2018) Measurement Error Models for Replicated Data Under Asymmetric Heavy-Tailed Distributions. Computational Economics, , 33, 319-338.https://doi.org/10.1007/s10614-017-9702-8. 16. Wang, Z., Shi, J. Q. and Lee, Y. (2017) Extended T-process Regression Models. Journal of Statistical Planning and Inference, 189,38-60. arXiv:1705.05125. 17. Cao, C., Shi, J. Q. and Lee, Y. (2017). Robust functional regression model for population- average and subject-specific inferences. Statistical Methods in Medical Research, http://journals.sagepub.com/doi/10.1177/0962280217695346. 18. Cao, C., Lin, J, Shi, J. Q., Wang, W. and Zhang, X. (2015) Multivariate measurement error models for replicated data under heavy-tailed distributions Journal of Chemometrics, 29, 457-466. 19. Lu, H., Yin, P., Yue, R. X. and Shi, J. Q. (2015) Robust confidence intervals for trend estimation in meta-analysis with publication bias. Journal of Applied Statistics, 42, 2715- 2733. 20. Wang, B. and Shi, J. Q. (2014). Generalized Gaussian Process Regression Model for non- Gaussian Functional Data. Journal of American Statistical Association, 109, 1123-1133. 21. Serradilla, J. Shi, J. Q., Cheng, Y., Morgan, G., Lambden, C. and Eyre, J. A. (2014). Automatic Assessment of Upper Limb Function During Play of the Action Video Game, Circus Challenge: Validity and Sensitivity to Change. SEGAH 2014. (The best paper winner in the IEEE 3rd International Conference on Serious Games and Applications for Health, held on Rio de Janeiro, Brazil, May 14-16, 2014 ). 22. Scott M, Blewitt W, Ushaw G, Shi JQ, Morgan G, Eyre J. Automating assessment in video game teletherapy: Data cutting.In: 2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE). 2014, Orlando, Florida: IEEE. 9-16. 23. Cao, C. Z., Lin, J. G. and Shi, J. Q. (2014). Diagnostics on nonlinear model with scale mixtures of skew-normal and first-order autoregressive errors. Statistics. , 48, 1033- 1047. 24. Shi, J.Q, Cheng, Y., Serradilla, J., Morgan, G., Lambden, C., Ford, G.A., Price, C., Rodgers, H, Cassidy, T., Rochester, L. and Eyre, J.A. (2013). Evaluating Functional Ability of Upper Limbs after Stroke Using Video Game Data. K. Imamura et al. (Eds.): BHI 2013, LNAI 8211, pp. 181–192. Springer. 25. Lin, N. X., Shi, J. Q. and Henderson, R. (2012). Doubly mis-specified models. Biometrika. 99, 285-298. 26. Shi, J. Q., Wang, B., Will, E. J. and West. R. M. (2012). Mixed-effects GPFR models with application to dose-response curve prediction. Statistics in Medicine. 31, 3165-77. 27. Yi, G., Shi, J. Q. and Choi, T. (2011) Penalized Gaussian Process Regression and Classification for High-Dimensional Nonlinear Data. Biometrics. 67, 1285-1294. 28. Choi, T., Shi, J. Q. and Wang, B. (2011). Bayesian single-index model using a Gaussian process prior. J. of Nonparametric Statistics. 23, 21-36. (The winning paper for the JNPS and American Statistical Association Nonparametric Section 2011 Best Paper Award) 29. Serradilla, J., Shi, J.Q. and Morris, J. (2011). Fault detection based on Gaussian process latent variable models. Chemometrics and Intelligent Laboratory Systems. 109, 9-21. 30. Chootrakool, H., Shi, J. Q. and Yue, R. (2011). Meta-analysis and sensitivity analysis for multi-arm trials with selection bias. Statistics in Medicine. 30, 1183-1198. 31. Lee, W., Shi, J. Q. and Lee, Y. (2010). Approximate Conditional Inference in Mixed Effects Models with Binary Data. Computational Statistics and Data Analysis. 54, 173- 184. 32. Shi, J. Q. and Tang, M. L. (2009). Trend estimation (2nd edition). Encyclopaedia of Biopharmaceutical Statistics, 1:1, 1 – 7 URL: http://dx.doi.org/10.1081/E-EBS- 120041929 . (Invited contribution for an entry to the Encyclopedia of Biopharmaceutical Statistics, peer-reviewed) 33. Chootrakool, H. and Shi, J. Q. (2008). Meta-Analysis of multi-arm trials using Empirical Logistic Transform. The Open Medical Informatics Journal, 2. 105-109. 34. Shi, J.Q. and Wang, B. (2008) Curve Prediction and Clustering with Mixtures of Gaussian Process Functional Regression Models. Statistics and Computing, 18, 267-283. 35. Shi, J.Q., Wang, B., Murray-Smith, R. and Titterington, D.M. (2007). Gaussian process functional regression modeling for batch data. Biometrics, 63, 714-723. 36. Shi, J. Q. (2007). Meta-analysis and latent variable models for binary data. Handbook of Computing and Statistics with Applications: Latent Variable and Related Models, Vol. 1. Lee, S.Y., Kontoghiorghes, E.J., Eds.; Elsevier,2007, 261-278 . 37. Shi, J.Q., Murray-Smith, R. and Titterington, D.M. (2005). Hierarchical Gaussian process mixtures for regression. Statistics and Computing 15, 31-41. 38. Kamnik, R., Shi, J.Q., Murray-Smith, R. and Bajd, T. (2005). Nonlinear modelling of FES-supported standing up in paraplegia for selection of feedback sensors. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 13, 40-52. 39. Shi, J. Q., Murray-Smith, R., Titterington, D.M. and Pearlmutter, B.A. (2005). Learning with large data-sets using a filting approach. Switching and Learning in Feedback Systems. Eds R. Murray-Smith and R. Shorten. Springer-verlag. 128-139. 40. Shi, J.Q. and Copas, J.B. (2004). Meta-analysis for trend estimation. Statistics in Medicine. 23, 3-19. 41. Shi, J.Q., Murray-Smith, R. and Titterington, D.M. (2003). Bayesian regression and classification using mixtures of multiple Gaussian processes. International Journal of Adaptive Signal Processing. 17, 149-161. 42. Shi, J.Q. and Copas, J.B. (2002). Meta-analysis for 22 Tables using an average Markov chain Monte Carlo EM algorithm. J. R. Statist. Soc. B. 64, 221-236. 43. Shi, J.Q., Lee, S.Y. and Wei, B.C. (2002). On confidence regions of structural equation Models. In Structural Equation and Latent Variable Models. Eds. G. A. Marcoulides and I. Moustaki. Lawrence Erlbaum Associatites, INC. 135-152. 44. Lee, S.Y. and Shi, J.Q. (2001). Maximum likelihood estimation of two-level latent variable models with mixed continuous and polytomous data. Biometrics, 57, 787-794. 45. Copas, J.B. and Shi, J.Q. (2001). A Sensitivity analysis for publication bias in systematic reviews. Statistical Methods in Medical Research. 10, 251-265. 46. Shi, J.Q. and Lee, S.Y. (2000). Latent Variable models with mixed continuous and polytomous data. J. R. Statist. Soc. B, 62, 77-87. 47. Copas, J.B. and Shi, J.Q. (2000). Meta-analysis, funnel plots and sensitivity analysis.Biostatistics, 1, 247-262. 48. Copas, J.B. and Shi, J.Q. (2000). The epidemiological evidence on lung cancer and passive smoking: a reanalysis. British Medical Journal, 320, 417-418. 49. Lee, S.Y. and Shi, J.Q. (2000). Joint Bayesian analysis of factor score and structural parameters in the factor analysis models. Ann. Inst. Statist. Math, 52, 722-736. 50. Lee, S.Y. and Shi, J.Q. (2000). Bayesian analysis of structural equation model with fixed covariates. Structural Equation Modelling, 7, 411-430. 51. Shi, J.Q. and Wan, F.H. (1999). Diagnostics for empirical Bayes models. Systems Science and mathematical Sciences, 12, No.2, 104-114. 52. Lee, S.Y. and Shi, J.Q. (1998). Analysis of covariance structure with independent and non-identically distributed observations. Statistica Sinica, 8, 543-557. 53. Shi, J.Q. and Lee, S.Y. (1998). Bayesian sampling-based approaches for factor analysis model with continuous and polytomous data Brit. J. of Math. & Stat. Psychology, 51, 233- 252. 54. Wei, B.C., Shi, J.Q., Fung, W.K. and Hu, Y.Q. (1998). Testing for varying dispersion in exponential family nonlinear models. Ann. Inst. Statist. Math. 50, No.2, 277-294. 55. Shi, J.Q. and Lee, S.Y. (1997). A Bayesian estimation of factor score in confirmatory factor model with polytomous, censored or truncated data. Psychometrika, 62, No.1, 29- 50. 56. Shi, J.Q. and Lee, S.Y. (1997). Estimation of factor scores with polytomous data by EM algorithm. Brit. J. of Math. & Stat. Psychology, 50, 215-226. 57. Shi, J.Q. and Wei, B.C. (1995). Bayesian local influence. Mathematica Applicata, 8, No.2, 237-245. 58. Shi, J.Q. and Wei, B.C. (1995). Diagnostics for nonlinear regression model with transformation or weighting. Systems Science and Mathematical Sciences, 8, No.3, 240- 248. 59. Shi, J.Q. (1995). Assessing local prior influence in Bayesian analysis. Applied Mathematics – A journal of Chinese University, 10B, 123-132. 60. Wei, B.C. and Shi, J.Q. (1994). On statistical models for regression diagnostics. Ann. Inst. Statist. Math., 46, No. 2, 267-278. 61. Wei, B.C. and Shi, J.Q. (1994). Local influential analysis for transformation model. Acta Mathematicae Applicatae Sinica, 17, No.1, 132-143. (in Chinese). 62. Shi, J.Q. (1993). Regression transformation diagnostics in transform-both-sides model.Statistics & Probability Letters, 16, 411-20. 63. Hu, H.M. and Shi, J.Q. (1993). Estimation of matrix elliptical contoured distributions with censored data. J. of Southeast University, V.23, No.3, 118-22. (in Chinese). 64. Shi, J.Q. (1993). Bayesian inference for change points in mathematical models of social economy. Information & Control, 22, 165-9. (in Chinese). 65. Shi, J.Q. (1993). Influential analysis in accelerate life model with censored data. Mach. & Elec. Tech. Water Conservancy & Elec. Pow.}, V7, No.1, 53-58. (in Chinese). 66. Shi, J.Q. (1992). Diagnostics and local influence for the proportional hazards model with censored data. J. of Biomathematics, Vol.7, No.3, 81-91. (in Chinese). 67. Shi, J.Q. and Wei, B.C. (1992). Convergence of iteration methods of maximum likelihood estimator and its applications. J. of Southeast University (English Edition), V.8, No.2, 85-93; (Chinese Edition), V.22, No.3, 81-88. 68. Shi, J.Q. and Zhao, Z.F. (1992). A predictive view of inference about the structural change in mathematical models of social economy. Information & Control, 21, 271-7. (in Chinese). 69. Shi, J.Q. and Yao, Q.W. (1989). A Bayesian Inference for a change point in a multivariate linear model. Mathematical Statistics and Applied Probability, 4, 297-307. (in Chinese). 新闻动态 更多新闻 我校统计与数据科学系正式成立 2020-09-17 团队成员 查看更多 PrevNext UpDown 加入团队 教师简介史建清教授,南方科技大学统计与数据科学系教授。曾任英国纽卡斯尔大学(Newcastle University)统计学教授,英国国家艾伦图灵研究院图灵研究员。主要研究方向包括函数型数据分析,生物医学统计,缺失数据分析,meta-analysis等。在国际学术刊物上发表高水平学术论文多篇,包括统计顶级期刊 JRSSB, JASA, Biometrika和Biostatistics。曾任英国皇家统计协会《应用统计》副主编,Guest AE for JRSS discussion paper,英国纽卡斯尔大学云计算和大数据研究培训中心副主任。曾获邀任剑桥大学世界最顶级数学学院之一牛顿学院访问研究员,获美国统计协会非参数统计分会年度最佳论文奖,2012年获英国 Wellcome trust Health Innovation Challenge Fund,共计210万英镑。2011年在最著名统计学出版社Chapman & Hall 出版专著:Gaussian Process Regression Analysis for Functional Data。 课题组依托南方科技大学统计与数据科学系,配备高性能计算平台,提供优厚的薪酬待遇,欢迎各位充满学术热情的青年才俊加盟。我们将打造自由灵活的理论研究环境、良好的实验平台和国际化的研究视野与科研团队。 招聘信息科研教学助理专业:统计、数学、计算机及相关交叉学科招聘条件:1. 具有较强的数学功底、合作精神和英文水平;2. 熟悉或有兴趣统计计算算法,精通R/Python等至少一种数据分析语言;3. 985、211、境外名校相关专业硕士生或本科毕业生优先;4. 对统计计算,统计模型和复杂数据分析等有兴趣者优先;5. 尽快上岗 福利待遇:1. 每月工资5000—10000元,能力出众者,薪酬可议,可额外享受年终绩效;2. 享受国家法定节假日及按学校规定的带薪年假、“五险一金”、过节费(主要中国节日都有,每次1000元)、每月餐补、高温补贴、免费体检等福利;3. 良好的个人成长与发展空间,科研表现优秀者可优先推荐攻读博士学位。 联系方式有意向者请将以下信息整合为一个PDF文件:详细简历、成绩单、personal statement,最早可到岗时间。邮件发送至滕老师:tengyr@mail.sustech.edu.cn。邮件标题请注明:应聘岗位-本人姓名-所学专业。 查看更多 联系我们 联系地址 商学院大楼309 办公电话 0755-88015796 电子邮箱 shijq@sustech.edu.cn

杨永