教师主页移动版

首页 - 浙江师范大学

周小顺

姓名 周小顺
教师编号 26446
性别
学校 浙江师范大学
部门 博士学位
学位 博士学位
学历 博士研究生毕业
职称 研究员(自然科学)
联系方式 【发送到邮箱】
邮箱 【发送到邮箱】
人气
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳

周小顺 122 研究员(自然科学) 性别 : 男 毕业院校 : 厦门大学 学历 : 博士研究生毕业 学位 : 博士学位 在职信息 : 在岗 所在单位 : 化学与材料科学学院 入职时间 : 2009-09-28 学科 : 化学 联系方式 : 0579-82286876 Email : xszhou@zjnu.edu.cn 访问量 : 0000012541 最后更新时间 : 2024.3.12 个人简介 基本资料周小顺,1981年生,浙江临海人,博士、研究员,博士生导师。入选国家“万人计划”青年拔尖人才、浙江省杰出青年科学基金获得者、浙江省院士结对培养青年英才计划、浙江省高校领军人才培养计划高层次拔尖人才、浙江省高等学校中青年学科带头人、浙江省“三育人”岗位建功先进个人、“双龙学者”特聘教授。本科毕业于浙江大学化学系,博士毕业于厦门大学化学系物理化学专业,随后赴法国巴黎高师化学系从事博士后研究。主要从事单分子电子学、扫描隧道显微术、电化学和表面增强拉曼等相关研究。现任浙江师范大学物理化学研究所所长。已以通讯作者身份在Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Mater.、Nano Lett.、J. Phys. Chem. Lett.、ACS Appl. Mater. Interfaces、Nanoscale等SCI期刊上发表论文。同时担任J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、J. Phys. Chem. Lett.、Small、ACS Appl. Mater. Interfaces、Cell Rep. Phys. Sci.、Sci. Bull.和Nano Res.等期刊审稿人。主持国家自然科学基金项目6项、浙江省杰出青年科学基金项目1项。课题组招聘教师(条件优秀者可聘双龙学者特聘教授)和博士后,欢迎具有分子电子学、扫描隧道显微镜、电化学、表面增强拉曼光谱等相关背景的优秀博士加入本课题组。课题组在化学、材料科学与工程、材料与化工(专业学位)方向均招收研究生,欢迎考生联系xszhou@zjnu.edu.cn(周老师)或yahaowang@zjnu.edu.cn(王老师)。Email:xszhou@zjnu.edu.cn;办电:0579-82286876办公室:11幢210室学术兴趣及主要研究方向l单分子电子学l界面电化学l扫描隧道显微镜l表面增强拉曼光谱l电催化课题组主要成员      王亚浩博士,副教授,硕士生导师, 博士毕业于厦门大学, 导师: 李剑锋。E-mail: yahaowang@zjnu.edu.cn  万强博士, 博士毕业于福州大学, 导师: 林森。E-mail: qiangwan@zjnu.edu.cn主要科研项目1. 国家自然科学基金面上项目,“基于裂结技术的表面酸碱化学及其电化学调控的单分子水平研究”,2022.01-2025.12,主持2. 国家自然科学基金面上项目,“基于量子干涉效应单分子结电子输运的电化学调控研究”,2019.01-2022.12,主持3. 国家自然科学基金面上项目,“基于全量程范围的STM裂结技术应用于芳香性对单分子结电子输运影响研究”,2016.01-2019.12,主持4. 浙江省杰出青年科学基金项目,“单分子场效应晶体管的电化学构筑和性能研究”,2015.01-2018.12,主持5. 国家自然科学基金面上项目,“金属原子线和非氧化-还原型分子结电导的电化学门控研究”,2013.01-2016.12,主持6. 国家自然科学基金国际(地区)合作交流项目,“电活性分子的超快伏安和构象调控电导研究”,2012.02-2012.12,主持7. 国家自然科学基金青年科学基金项目,“氧化-还原分子电子输运的STM裂结技术和电化学超快循环伏安法研究”,2011.01-2013.12,主持发表的主要论文[50] Tong, L.; Yu, Z.; Gao, Y.-J.; Li, X.-C.; Zheng, J.-F.; Shao, Y.; Wang, Y.-H.*; Zhou, X.-S.* Local cation-tuned reversible single-molecule switch in electric double layer. Nat. Commun.2023, 14, 3397.[49] Zhou, Y.-H.; Jiang, C.-C.; Yu, Z.; Wang, Y.-H.*; Zheng, J.-F.*; Zhou, X.-S.* In situ Raman monitoring of electroreductive dehalogenation of aryl halides at an Ag/aqueous solution interface. Anal. Methods 2023, 15, 771-777.[48] Wang, Y.-H.; Li, X.-C.; Yu, Z.; Zheng, J.-F.; Zhou, X.-S.* Break-junction measurements at electrochemical interface: From electron transport to molecular adsorption and reaction process. Curr. Opin. Electroche. 2023, 39, 101279.[47] Zhou, Y.-F.; Chang, W.-Y.; Chen, J.-Z.; Huang, J.-R.; Fu, J.-Y.; Zhang, J.-N.; Pei, L.-Q.; Wang, Y.-H.; Jin, S.; Zhou, X.-S.* Substituent-mediated quantum interference toward a giant single-molecule conductance variation. Nanotechnology 2022, 33, 095201.[46] Yu, Z.; Li, J. Q.; Wang, Y. H.*; Su, J. Q.; Fu, J. Y.; Zou, J. W.; Zheng, J. F.; Shao, Y.; Zhou, X. S.* Visualizing an electrochemically induced radical cation of bipyridine at Au(111)/ionic liquid interfaces toward a single-molecule switch. Anal. Chem. 2022, 94, 1823-1830.[45] Tong, L.; Bao, S. Y.; Jiang, C. C.; Li, X. C.; Li, J. J.; Huang-Fu, X. N.; Zheng, J. F.; Shao, Y.; Wang, Y. H.*; Gao, Y. J.*; Zhou, X. S.* Tuning the binding configurations of single-molecule junctions by molecular co-assembly. Chem. Commun. 2022, 58, 4962-4965.[44] Seng, J.-W.; Tong, L.; Peng, X.-Q.; Chang, W.-Y.; Xie, W.; Wang, Y.-H.; Zheng, J.-F.*; Shao, Y.; Chen, J.-Z.*; Jin, S.*; Zhou, X.-S.* Influence of a coordinated metal center on charge transport through a series of porphyrin molecular junctions. J. Phys. Chem. C 2022, 126, 1168-1175.[43] Lv, S.-L.; Zeng, C.; Yu, Z.; Zheng, J.-F.; Wang, Y.-H.*; Shao, Y.; Zhou, X.-S.* Recent advances in single-molecule sensors based on STM break junction measurements. Biosensors 2022, 12, 565.[42] Jiang, C.-C.; Li, X.-C.; Fan, J.-A.; Fu, J.-Y.; Huang-Fu, X.-N.; Li, J.-J.; Zheng, J.; Zhou, X.-S.*; Wang, Y.-H.*, Electrochemically activated carbon−halogen bond cleavage and C-C coupling monitored by in situ shell-isolated nanoparticle-enhanced Raman spectroscopy. Analyst 2022, 147, 1341-1347.[41] Fu, J.-Y.; Li, X.-C.; Yu, Z.; Huang-Fu, X.-N.; Fan, J.-A.; Zhang, Z.-Q.; Huang, S.; Zheng, J.-F.; Wang, Y.-H.*; Zhou, X.-S., In Situ Raman Monitoring of Potential-Dependent Adlayer Structures on the Au(111)/Ionic Liquid Interface. Langmuir 2022, 38, 6209-6216.[40] Yu, Z.; Xu, Y.-X.; Su, J.-Q.; Radjenovic, P. M.; Wang, Y.-H.*; Zheng, J.-F.; Teng, B.*; Shao, Y.; Zhou, X.-S.*; Li, J.-F.* Probing interfacial electronic effects on single-molecule adsorption geometry and electron transport at atomically-flat surfaces. Angew. Chem. Int. Ed. 2021, 60, 15452-15458.[39] Zhang, Y. J.; Radjenovic, P. M.; Zhou, X. S.*; Zhang, H.*; Yao, J. L.*; Li, J. F.*, Plasmonic core–shell nanomaterials and their applications in spectroscopies. Adv. Mater. 2021, 33, 2005900.[38] Pei, L.-Q.; Horsley, J. R.; Seng, J.-W.; Liu, X.; Yeoh, Y. Q.; Yu, M.-X.; Wu, X.-H.; Abell, A. D.; Zheng, J.-F.; Zhou, X.-S.*; Yu, J.*; Jin, S.* Mechanically induced switching between two discrete conductance states: A potential single-molecule variable resistor. ACS Appl. Mater. Interfaces 2021, 13, 57646-57653.[37] Wang, Y.-H.; Zhou, Y.-F.; Tong, L.; Huang, H.; Zheng, J.-F.; Xie, W.; Chen, J.-Z.*; Shao, Y.*; Zhou, X.-S.*, Revealing supramolecular interactions and electron transport in single molecular junctions of cucurbit[n]uril. Adv. Electron. Mater. 2021, 7, 2100399.[36] Li, J. J.; Chen, Z. B.; Wang, Y. H.; Zhou, X. S.*; Xie, L. Q.; Shi, Z.; Liu, J. X.; Yan, J. W.; Mao, B. W.* Single-molecule anisotropic magnetoresistance at room temperature: Influence of molecular structure. Electrochim. Acta 2021, 389, 138760.[35] Li, X.-M.; Wang, Y.-H.; Seng, J.-W.; Zheng, J.-F.*; Cao, R.; Shao, Y.; Chen, J.-Z.*; Li, J.-F.; Zhou, X.-S.*; Mao, B.-W. z-Piezo pulse-modulated STM break junction: Toward single-molecule rectifiers with dissimilar metal electrodes. ACS Appl. Mater. Interfaces 2021, 13, 8656-8663.[34] Li, H. B.; Xi, Y.-F.; Hong, Z.-W.; Yu, J.; Li, X.-X.; Liu, W.-X.; Domulevicz, L.; Jin, S.*; Zhou, X.-S.*; Hihath, J.* Temperature-dependent tunneling in furan oligomer single-molecule junctions. ACS Sensors 2021, 6, 565-572.[33] Wang, Y.-H.; Yan, F.; Li, D.-F.; Xi, Y.-F.; Cao, R.; Zheng, J.-F.; Shao, Y.; Jin, S.*; Chen, J.-Z.*; Zhou, X.-S.* Enhanced gating performance of single-molecule conductance by heterocyclic molecules. J. Phys. Chem. Lett. 2021, 12, 758-763.[32] Tao, C.-P.; Jiang, C.-C.; Wang, Y.-H."; Zheng, J.-F.; Shao, Y.; Zhou, X.-S.* Single-molecule sensing of interfacial acid–base chemistry. J. Phys. Chem. Lett. 2020, 11, 10023-10028.[31] Dong, J.-C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J.-B.; Radjenovic, P.; Zhou, X.-S.; Feliu, J. M.*; Tian, Z.-Q.; Li, J.-F.* Direct in situ raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J. Am. Chem. Soc. 2020, 142, 715-719.[30] Wu, X.-H.; Chen, F.; Yan, F.; Pei, L.-Q.; Hou, R.; Horsley, J. R.; Abell, A. D.; Zhou, X. S.*; Yu, J.*; Li, D.-F.; Jin, S.*; Mao, B.-W.*, Constructing dual-molecule junctions to probe intermolecular crosstalk. ACS Appl. Mater. Interfaces 2020, 12, 30584-30590.[29] Wang, Y. H.; Huang, H.; Yu, Z.; Zheng, J.; Shao, Y.; Zhou, X. S.*; Chen, J.*; Li, J. F.* Modulating electron transport through single-molecule junctions by heteroatom substitution. J. Mater. Chem. C 2020, 8, 6826-6831.[28] Yan, F.; Chen, F.; Wu, X. H.; Luo, J.; Zhou, X. S.*; Horsley, J. R.; Abell, A. D.; Yu, J.*; Jin, S.*; Mao, B. W. Unique metal cation recognition via crown ether-derivatized oligo(phenyleneethynylene) molecular junction. J. Phys. Chem. C 2020, 124, 8496-8503.[27] Zhang, F.; Wu, X. H.; Zhou, Y. F.; Wang, Y. H.; Zhou, X. S.*; Shao, Y.; Li, J. F.; Jin, S.*; Zheng, J. F.* Improving gating efficiency of electron transport through redox-active molecular junctions with conjugated chain. ChemElectroChem 2020, 7, 1337-1341.[26] Shen, P.; Huang, M.; Qian, J.; Li, J.; Ding, S.; Zhou, X. S.; Xu, B.; Zhao, Z.*; Tang, B. Z. Achieving efficient multichannel conductance in through-space conjugated single-molecule parallel circuits. Angew. Chem. Int. Ed. 2020, 59, 4581-4588.[25] Wang, Y. H.; Le, J. B.; Li, W. Q.; Wei, J.; Radjenovic, P. M.; Zhang, H.; Zhou, X. S.*; Cheng, J.*; Tian, Z. Q.; Li, J. F.*, In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR). Angew. Chem. Int. Ed. 2019, 58, 16062-16066.[24] Huang, B.; Liu, X.; Yuan, Y.; Hong, Z. W.; Zheng, J. F.; Pei, L. Q.; Shao, Y.; Li, J. F.; Zhou, X. S.*; Chen, J.*; Jin, S.*; Mao, B. W.*, Controlling and observing of sharp-valleyed quantum interference effect in single molecular junctions. J. Am. Chem. Soc. 2018, 140, 17685-17690.[23] Zhen, S.; Mao, J. C.; Chen, L.; Ding, S.; Luo, W.; Zhou, X. S.*; Qin, A.; Zhao, Z.*; Tang, B. Z.*, Remarkable multichannel conductance of novel single-molecule wires built on through-space conjugated hexaphenylbenzene. Nano Lett. 2018, 18, 4200-4205.[22] Wang, Y. H.; Zhang, Y. J.; Liang, M. M.; Chen, S.; Radjenovic, P.; Zhang, H.; Yang, Z. L.; Zhou, X. S.*; Tian, Z. Q.; Li, J. F.*, Probing interfacial electronic and catalytic properties on well-defined surfaces using in situ raman spectroscopy. Angew. Chem. Int. Ed. 2018, 57, 11257-11261.[21] Peng, L. L.; Chen, F.; Hong, Z. W.; Zheng, J. F.; Fillaud, L.; Yuan, Y.; Huang, M. L.; Shao, Y.; Zhou, X. S.*; Chen, J. Z.*; Maisonhaute, E.*, Precise tuning of single molecule conductance in an electrochemical environment. Nanoscale 2018, 10, 7026-7032.[20] Mao, J. C.; Peng, L. L.; Li, W. Q.; Chen, F.; Wang, H. G.; Shao, Y.; Zhou, X. S.*; Zhao, X. Q.*; Xie, H.*; Niu, Z. J. Influence of molecular structure on contact interaction between thiophene anchoring group and Au electrode. J. Phys. Chem. C 2017, 121, 1472-1476.[19] Zhou, X. S.; Mao, B. W.; Amatore, C.; Compton, R. G.; Marignier, J.-L.; Mostafavi, M.; Nierengarten, J.-F.; Maisonhaute, E.* Transient electrochemistry: beyond simply temporal resolution. Chem. Commun. 2016, 52, 251-263.[18] Hong, Z. W.; Aissa, M. A. B.; Peng, L. L.; Xie, H.; Chen, D. L.; Zheng, J. F.; Shao, Y.; Zhou, X. S.*; Raouafi, N.*; Niu, Z. J. Quantum interference effect of single-molecule conductance influenced by insertion of different alkyl length. Electrochem. Commun. 2016, 68, 86-89.[17] Chen, L.; Wang, Y. H.; He, B.; Nie, H.; Hu, R.; Huang, F.; Qin, A.; Zhou, X. S.*; Zhao, Z.*; Tang, B. Z.* Multichannel conductance of folded single-molecule wires aided by through-space conjugation. Angew. Chem. Int. Ed. 2015, 54, 4231-4235.[16] Li, D. F.; Mao, J. C.; Chen, D. L.; Chen, F.; Hong, Z. W.; Zhou, X. Y.; Wang, Y. H.; Zhou, X. S.*; Niu, Z. J.; Maisonhaute, E.* Single-molecule conductance with nitrile and amino contacts with Ag or Cu electrodes. Electrochim. Acta 2015, 174, 340-344.[15] Hong, Z. W.; Chen, F.; Wang, Y. H.; Mao, J. C.; Li, D. F.; Tang, Y.; Shao, Y.; Niu, Z. J.; Zhou, X. S.* The binding sites of carboxylic acid group contacting to Cu electrode. Electrochem. Commun. 2015, 59, 48-51.[14] Li, J. J.; Bai, M. L.; Chen, Z. B.; Zhou, X. S.; Shi, Z.; Zhang, M.; Ding, S. Y.*; Hou, S. M.*; Schwarzacher, W.*; Nichols, R. J.; Mao, B. W.* Giant single-molecule anisotropic magnetoresistance at room temperature. J. Am. Chem. Soc. 2015, 137, 5923-5929.[13] Wang, Y. H.; Hong, Z. W.; Sun, Y. Y.; Li, D. F.; Han, D.; Zheng, J. F.; Niu, Z. J.; Zhou, X. S.* Tunneling decay constant of alkanedicarboxylic acids: Different dependence on the metal electrodes between air and electrochemistry. J. Phys. Chem. C 2014, 118, 18756-18761.[12] Wang, Y. H.; Li, D. F.; Hong, Z. W.; Liang, J. H.; Han, D.; Zheng, J. F.; Niu, Z. J.; Mao, B. W.; Zhou, X. S.* Conductance of alkyl-based molecules with one, two and three chains measured by electrochemical STM break junction. Electrochem. Commun. 2014, 45, 83-86.[11] Chen, Z. B.; Peng, Z. L.; Liang, J. H.; Zhou, X. S.*; Wu, D. Y.*; Amatore, C.; Mao, B. W.* Gold atomic contact: Electron conduction in the presence of interfacial charge transfer. Electrochem. Commun. 2014, 47, 41-44.[10] Wang, Y. H.; Zhou, X. Y.; Sun, Y. Y.; Han, D.; Zheng, J. F.; Niu, Z. J.; Zhou, X. S.* Conductance measurement of carboxylic acids binding to palladium nanoclusters by electrochemical jump-to-contact STM break junction. Electrochim. Acta 2014, 123, 205-210.[9] Sun, Y. Y.; Peng, Z. L.; Hou, R.; Liang, J. H.; Zheng, J. F.; Zhou, X. Y.; Zhou, X. S.*; Jin, S.*; Niu, Z. J.; Mao, B. W. Enhancing electron transport in molecular wires by insertion of a ferrocene center. Phys. Chem. Chem. Phys. 2014, 16, 2260-2267.[8] Zhou, X. Y.; Peng, Z. L.; Sun, Y. Y.; Wang, L. N.; Niu, Z. J.; Zhou, X. S.* Conductance measurement of pyridyl-based single molecule junctions with Cu and Au contacts. Nanotechnology 2013, 24, 465204.[7] Peng, Z. L.; Chen, Z. B.; Zhou, X. Y.; Sun, Y. Y.; Liang, J. H.; Niu, Z. J.; Zhou, X. S.*; Mao, B. W.* Single molecule conductance of carboxylic acids contacting Ag and Cu electrodes. J. Phys. Chem. C 2012, 116, 21699-21705.[6] Zhou, X. S.; Liu, L.; Fortgang, P.; Lefevre, A. S.; Serra-Muns, A.; Raouafi, N.; Amatore, C.*; Mao, B. W.*; Maisonhaute, E.*; Schöllhorn, B.* Do molecular conductances correlate with electrochemical rate constants? Experimental insights. J. Am. Chem. Soc. 2011, 133, 7509-7516.[5] Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X.; Ren, B.*; Tian, Z. Q. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2011, 2, 305.[4] Zhou, X. S.*; Liang, J. H.; Chen, Z. B.; Mao, B. W.* An electrochemical jump-to-contact STM-break junction approach to construct single molecular junctions with different metallic electrodes. Electrochem. Commun. 2011, 13, 407-410.[3] Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.*; Tian, Z. Q.* Shell-isolated nanoparticle-enhanced raman spectroscopy. Nature 2010, 464, 392-395.[2] Zhou, X. S.; Wei, Y. M.; Liu, L.; Chen, Z. B.; Tang, J.; Mao, B. W.* Extending the capability of STM break junction for conductance measurement of atomic-size nanowires: An electrochemical strategy. J. Am. Chem. Soc. 2008, 130, 13228-13230.[1] Zhou, X. S.; Chen, Z. B.; Liu, S. H.; Jin, S.; Liu, L.; Zhang, H. M.; Xie, Z. X.; Jiang, Y. B.; Mao, B. W.* Single molecule conductance of dipyridines with conjugated ethene and nonconjugated ethane bridging group. J. Phys. Chem. C 2008, 112, 3935-3940. 专著章节Zhou, X. S.; Maisonhaute, E. In Electrochemistry: Volume 11 - Nanosystems Electrochemistry [M]. Wadhawan, J. D., Compton, R. G., Eds.; The Royal Society of Chemistry: 2013; Vol. 11, p 1-33. 教师其他联系方式 通讯/办公地址 : 11幢-210室 邮箱 : xszhou@zjnu.edu.cn

周小顺
周小顺
SCI学术指导