教师主页移动版

首页 - 南方科技大学

LIUQihang

姓名 LIUQihang
教师编号 20773
性别 发明专利4999代写全部资料
学校 南方科技大学
部门 发明专利包写包过 加急申请
学位 发明专利包写包过 特惠申请
学历 版权登记666包过 代写全部资料
职称 Associate Professor
联系方式 【发送到邮箱】
邮箱 【发送到邮箱】
人气
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳

Home People Research Research Publications Teaching Protocol Sharing News Center for Pain Medicine Research Brief Info Software Alumni Join us Contact us LIU Qihang Associate Professor Qihang Liu, Associate Professor at the Department of Physics, SUSTC. Prof. Liu’s research interest is theoretical condensed matter physics and computational materials science, special focus is on novel physical properties induced by spin-orbit coupling, topological insulators, strong correlation physics, electronic and structural properties of crystals, surfaces, and interfaces, low-dimensional systems and nano-materials, and electron transport through nanostructures. Prof. Liu has published more than 30 peer-reviewed journal articles including Nat. Phys., PRX, PRL, PRB, Nano Lett., Adv. Func. Mater., and has received more than 2200 citations based on Google Scholar. Personal Profile Brief Introduction Qihang Liu, Associate Professor at the Department of Physics, SUSTC. Prof. Liu’s research interest is theoretical condensed matter physics and computational materials science, special focus is on novel physical properties induced by spin-orbit coupling, topological insulators, strong correlation physics, electronic and structural properties of crystals, surfaces, and interfaces, low-dimensional systems and nano-materials, and electron transport through nanostructures. Prof. Liu has published more than 30 peer-reviewed journal articles including Nat. Phys., PRX, PRL, PRB, Nano Lett., Adv. Func. Mater., and has received more than 2200 citations based on Google Scholar.   Research Interests Theoretical condensed matter physics and computational materials science: • Novel physics induced by spin-orbit coupling, such as topological insulators, spin splittings (Rashba-type and Dresselhaus-type) and related electronic or optical properties. • Atomic and electronic structure of crystals, defects, molecules and low-dimensional nanostructures, such as interfaces, heterostructures, graphene, silicene, carbon nanotube and transition-metal dichalcogenides. • Novel electronic device simulation in nanoelectronics and spintronics, such as (spin-) field effect transistor, negative differential resistance, spin-filter, spin-valve, etc. Educational Background 2007 – 2012: Ph. D. in Condensed Matter Physics, State Key Laboratory of Mesoscopic Physics and Department of Physics, Peking University, Beijing, China 2003 – 2007: Bachelor of Science, Department of Physics, Peking University, Beijing, China Professional Experience 2018-Present: Associate Professor, Department of Physics, Southern University of Science and Technology 2013 – 2018: Research Associate Faculty, Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 2012 – 2013: Postdoctoral fellow, Department of Physics and Astronomy, Northwestern University, Evanston, IL   Selected Publication • Q. Liu*, Q. Yao, Z. Kelly, C. Pasco, T. McQueen, S. Lany and A. Zunger, Electron Doping of Proposed Kagome Quantum Spin Liquid Produces Localized States in the Band Gap, Phys. Rev. Lett. 121, 186402 (2018). • J. Zheng, G. Teng, J. Yang, M. Xu, Q. Yao, Z. Zhuo, W. Yang, Q. Liu* and F. Pan, Mechanism of Exact Transition Between Cationic and Anionic Redox Activities in Cathode Material Li2FeSiO4, J. Phys. Chem. Lett. 9, 6262 (2018). • X. Zhang†, Q. Liu†, Q. Xu†, X. Dai and A. Zunger, Topological insulators vs. topological Dirac semimetals in honeycomb compounds, J. Am. Chem. Soc. 140, 13687 (2018). • X. Zhou, Q. Liu*, Q. Wu, T. Nummy, H. Li, J. Griffith, S. Parham, J. Waugh, E. Emmanouilidou, B. Shen, O. Yazyev, N. Ni and D. Dessau, Coexistence of tunable Weyl points and topological nodal lines in ternary transition-metal telluride TaIrTe4, Phys. Rev. B 97, 241102(R) (2018). • X. Zhang, L. B. Abdalla, Q. Liu* and A. Zunger, "Enabling electronic motif for topological insulation in ABO3 perovskites and its structural stability", Adv. Func. Mater. 27, 1701266 (2017). • Q. Liu* and A. Zunger, Predicted Realization of Cubic Dirac Fermion in Quasi-One-Dimensional Transition-Metal Mono-Chalcogenides, Phys. Rev. X 7, 021019 (2017). • X. Zhou, Q. Liu*, J. A. Waugh, H. Li, T. Nummy, X. Zhang, X. Zhu, G. Cao, A. Zunger and D. S. Dessau. Predicted electronic markers for polytypes of LaOBiS2 examined via angular resolved photoemission spectroscopy, Phys. Rev. B 95, 075118 (2017). • Q. Liu*, X. Zhang, J. A. Waugh, D. S. Dessau and A. Zunger. Orbital mapping of energy bands and the truncated spin polarization in three-dimensional Rashba semiconductors, Phys. Rev. B 94, 125207 (2016). • Q. Liu*, X. Zhang and A. Zunger. Transforming common III-V and II-VI semiconductor compounds into topological heterostructures: The case of CdTe/InSb superlattices, Adv. Func. Mater. 26, 3259 (2016). • Q. Liu*, X. Zhang and A. Zunger. Polytypism in LaOBiS2-type compounds based on different three-dimensional stacking sequences of two-dimensional BiS2 layers, Phys. Rev. B 93, 174119 (2016). • Q. Liu*, X. Zhang and A. Zunger, Intrinsic circular polarization in centrosymmetric stacks of transition-metal dichalcogenides, Phys. Rev. Lett. 114,087402 (2015). • Q. Liu*, X. Zhang, L. B. Abdalla, A. Fazzio and A. Zunger, Switching a Normal Insulator into a Topological Insulator via Electric Field with Application to Phosphorene, Nano Lett. 15, 1222 (2015). • Q. Liu*, X. Zhang, H. Jin, K. Lam, J. Im, A. J. Freeman, et al. Search and design of nonmagnetic centrosymmetric layered crystals with large local spin polarization. Phys. Rev. B 91, 235204 (2015). • X. Zhang†, Q. Liu†, J.-W. Luo, A. J. Freeman, A. Zunger, Hidden spin polarization in inversion-symmetric bulk crystals, Nat. Phys. 10, 387 (2014). • Q. Liu*, Y. Guo, A. J. Freeman, Tunable Rashba Effect in Two-dimensional LaOBiS2 Films: Ultra-thin Candidates for Spin Field Effect Transistors, Nano Lett. 13, 5264 (2013). • Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu and J. Lu, Tunable Bandgap in Silicene and Germanene, Nano Lett. 12, 113 (2012). † Co-first author * Corresponding author. Personal Profile Research Publications Read More Join us Read More Contact Us Contact Address Room 502, Huiyuan 1, No. 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong,China 518055 Office Phone 0755-88018277 Email liuqh@sustc.edu.cn

LIUQihang
LIUQihang
SCI学术指导