胡恒山
姓名 | 胡恒山 |
教师编号 | 92119 |
性别 | 胡恒山 |
学校 | 哈尔滨工业大学 |
部门 | 航天学院 |
学位 | 胡恒山 |
学历 | 胡恒山 |
职称 | 教授 |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
基本信息 课程教学 研究生 科研 波动研究 学术交流 Publications ... Publications 新建主栏目 Publications 名称 Papers are divided into following 6 directions: 1. Mechanics and Wave Physics of Rocks; 2. Anisotropy and Acoustic Logging in Anisotropic Formations; 3. Acoustic Logging: Wireline and Logging While Drilling; 4. Distant Reflection Logging; 5. Poromechanics and Acoustic Logging in Porous Formations; 6. Electrokinetic Effects and Seismoelectric Logging; 7. Earthquake: Coseismic Electromagnetic Field,Moment Tensors. Some papers may be found in more than one of the above directions. 1. Mechanics and Wave Physics of Rocks [111] [26]宋永佳,胡恒山,含随机指向狭缝流体饱和岩石中的弹性波,科学通报,2023年,第68卷第26期: 3529 ~ 3542. Song Y J, Hu H S. Elastic waves in fluid-saturated rocks with randomly orientated slit cracks (in Chinese). Chin Sci Bull, 2023, 68: 3529–3542, doi: 10.1360/TB-2023-0274. [25]Jiaqi Xu, Hengshan Hu, Qing Huo Liu, and Bo Han. 2023.A spectral element time domain (SETD) method based on poroelastic linear slip conditions for 3D wave propagation in fractured porous media, Waves in Random and Complex Media, published online: 16 Feb 2023. DOI: 10.1080/17455030.2023.2177501. [24]Changqing Mu, Yongjia Song & Hengshan Hu (2023): Rupture-induced dynamic pore pressure effect on rupture. Waves in Random and Complex Media, DOI:10.1080/17455030.2023.2182147. [23] Wenqiang Li and Hengshan Hu, 2023, Reflection and transmission of plane waves in stressed media with an imperfectly bonded interface, Geophys. J. Int. (2023) 233, 2232–2252 https://doi.org/10.1093/gji/ggad037, Advance Access publication 2023 January 30. [22]Yongjia Song, Yannan Lu, and Hengshan Hu*,2022, Modified multiplying-factor integration method for solving exponential function dual integrals in crack problems,Acta Mech. Sin., Vol. 38, 421287 (2022),https://doi.org/10.1007/s10409-021-09061-5. [21]Li, W., & Hu, H. (2022). Seismic sources in stress-induced anisotropic media. Journal of Geophysical Research: Solid Earth, 127, e2021JB023915. https://doi.org/10.1029/2021JB023915 [20]J. Xu, H. Hu*, Q. Zhan, et al.,2022,Nearly perfectly matched layer implementation for time domain spectral element modelling of wave propagation in 3D heterogeneous and anisotropic porous media, Journal of Applied Geophysics, 208 (2023) 104870, [19]Yin Chenggang, Hu Hengshan,Yu Chunhao, Wang Jun, 2018, Successic measurements of streaming pressure with the same core-holder, J.Appl.Geophys,152:48-55. [18]Yongjia Song; Hengshan Hu; John W. Rudnicki,2017,Normal compression wave scattering by a permeable crack in a fluid-saturated poroelastic solid,Acta Mechanica Sinica,33(2):356–367,DOI 10.1007/s10409-016-0633-8. [17]Feilong Xu and Hengshan Hu,2017, Inversion of the shear velocity of the cement in cased borehole through ultrasonic flexural waves,Geophysics, 82(2): D57-D68, doi: 10.1190/GEO2016-0314.1. http://dx.doi.org/10.1190/geo2016-0314.1 [16]Yongjia Song, Hengshan Hu, and John W. Rudnicki, 2017, Dynamic stress intensity factor (Mode I) of a permeable penny-shaped crack in a fluid-saturated poroelastic solid, International Journal of Solids and Structures , 2017, 110-111: 127-136. http://dx.doi.org/10.1016/j.ijsolstr.2017.01.034 [15]Yongjia Song, Hengshan Hu, and John W. Rudnicki, 2016, Deriving Biot-Gassmann relationship by inclusion-based method,GEOPHYSICS, VOL. 81, NO. 6 (NOVEMBER-DECEMBER 2016); P. D657–D667. [14]Wang J., Hu H, Guan W. and Yin C.G. 2016. Experimental study on electrokinetic properties of porous rock samples. Chinese J. Geophysics ((in Chinese), 59(9):3514-3523. [13]Yongjia Song, Hengshan Hu, John W. Rudnicki, and Yunda Duan,2016,Dynamic transverse shear modulus for a heterogeneous fluid-filled porous solid containing cylindrical inclusions, Geophys. J. Int.(September, 2016) 206 (3): 1677-1694 first published online June 27, 2016 doi:10.1093/gji/ggw245. [12]Song Y,Hu H,Rudnicki,2016,Dynamic bulk and shear moduli due to grain-scale local fluid flow in fluid-saturated cracked poroelastic rocks: Theoretical model, Journal of the Mechanics and Physics of Solids, 92(July 2016),28–54. DOI 10.1016/j.jmps.2016.03.019. [11]Song Y,Hu H,Rudnicki,2016,Shear properties of heterogeneous fluid-filled porous media with spherical inclusions, International journal of solids and structures,83,154-168. [10]Zhi Wang and Hengshan Hu.,2016, Moment tensors of a dislocation in a porous medium,Pure Appl. Geophys., 173 (2016), 2033–2045,DOI 10.1007/s00024-015-1220-9. [9]XU Feilong, HU Hengshan, YIN Chenggang, Evaluation of the cement bond quality through ltering the reected ultrasonic waves,CHINESE JOURNAL OF ACOUSTICS,34: 37-48 [8]Zhi Wang, Hengshan Hu, Yufeng Yang, 2015,Reciprocity relations for the elastodynamic fields generated by multipole sources in a fluid-solid configuration, Geophysical Journal International ,2015 203 (2): 883-892, [7]Jun Wang, Hengshan Hu, Wei Guan, Hui Li, 2015, Electrokinetic experimental study on saturated rock samples: zeta potential and surface conductance, Geophys. J. Int., 201(2), 869–877, DOI:10.1093/gji/ggv013. [6]Yi-de Zhang, Hengshan Hu, 2014, A technique to eliminate the azimuth ambiguity in single-well imaging, Geophysics, 79(6) , P. D409–D416, DOI:10.1190/GEO2013-0310.1 [5]Song Y J, Hu H S, 2014,High-frequency bulk moduli of fluid-saturated cracked porous rocks (in Chinese). Sci Sin-Phys Mech Astron, 44: 610–620, doi:10.1360/SSPMA2013--00092. [4] Yong-Jia Song, Heng-Shan Hu, 2014, Variation of effective elastic moduli of a solid with transverse isotropy due to aligned inhomogeneities, Acta Phys. Sin. Vol. 63, No. 1 (2014) 016202, DOI: 10.7498/aps.63.016202. [3] Yongjia Song, Hengshan Hu,2013, Effects of squirt-flow in cracks on drained bulk mudulus of porous media, Chinese Journal of Theoretical and Applied Mechanics, 45(3): 395-405. [2] Hengshan Hu, Jiaqi Liu, Kexie Wang.2002. Attenuation and seismoelectric characteristics of dynamically compatible porous media.SEG Technical Program Expanded Abstracts,2002. pp. 1817-182 [1] Hengshan Hu,Kexie Wang,Jiaqi Liu,2002,Attenuation and dynamic compatibility of the fast compressional wave in a porous medium. Chinese J. Computational Physics, 2002,19(3), 203-207 2. Anisotropy and Acoustic Logging in Anisotropic Formations [10] Wenqiang Li and Hengshan Hu, 2023, Reflection and transmission of plane waves in stressed media with an imperfectly bonded interface, Geophys. J. Int. (2023) 233, 2232–2252 https://doi.org/10.1093/gji/ggad037, Advance Access publication 2023 January 30. [9]Li, W., & Hu, H. (2022). Seismic sources in stress-induced anisotropic media. Journal of Geophysical Research: Solid Earth, 127, e2021JB023915. https://doi.org/10.1029/2021JB023915 [8J. Xu, H. Hu*, Q. Zhan, et al.,2022,Nearly perfectly matched layer implementation for time domain spectral element modelling of wave propagation in 3D heterogeneous and anisotropic porous media, Journal of Applied Geophysics, 208 (2023) 104870, [7]Xiao He; Hengshan Hu; Xiuming Wang,2013, Finite difference modelling of dipole acoustic logs in a poroelastic formation with anisotropic permeability,Geophysical Journal International,192(1), 359–374. doi: 10.1093/gji/ggs024 [6]Xiao He, Hengshan Hu, Wei Guan,2010, Fast and slow flexural waves in a deviated borehole in a homogeneous or layered anisotropic formation, Geophys. J. Int , 181, 417–426. [5] Xiao He, Hengshan Hu ,2010, Single-valued definition of the multivalued function for borehole acoustic waves in transversely isotropic formations,SCIENCE CHINA Physics, Mechanics & Astronomy,53 (8): 1419–1426. [4] Xiao He,Hengshan Hu, 2009,Borehole Flexural Modes in Anisotropic Formations: The Low-Frequency Asymptotic Velocity, Geophysics. 74(4); E149–E158. [3] Hu, H. and He, X., 2009,The low-frequency asymptotic velocity of pseudo-Rayleigh, flexural, and screw modes in anisotropic formations, 79th SEG meeting, Houston, USA. SEG Technical Program Expanded Abstracts, 2009,216-220 [2] Hu H S (Hengshan Hu), He X.(Xiao He), 2009, The low-frequency asymptotic velocity of pseudo-Rayleigh,flexuaral, and screw waves in a transversely isotropic formation, Chinse J.Geophys.(in Chinses), 2009,52(7):1983-1880,DOI:10.3969/j.issn.0001-5733.2009.07.022. [1]Xiao He, and Hengshan Hu, 2008,Wave components of acoustic logs in transversely isotropic porous formations, Chinese Journal of Theoretical and Applied Mechanics (in Chinses),2009, 40(5): 663-671. 3. Acoustic Logging: Wireline Logging and Logging While Drilling [14]Zhang C, Hu H, Chen D. 2024, An individual mode extraction method based on density clustering algorithm in acoustic logging dispersion analysis. Geophysics, 89(1): P. D15–D29. DOI:10.1190/GEO2022-0706.1. [13]Yuan Gao, Hengshan Hu, Jiaqi Xu, 2023, Elastic reverse time migration method for single-well imaging and elimination of azimuthal ambiguity with a combined receiver system, IEEE Transactions on Geoscience and Remote Sensing. DOI 10.1109/TGRS.2023.3328032. [12]Jiaqi Xu, Hengshan Hu, and Zhi Wang, 2019, Asymptotic solution to 3D dipole single-well imaging system with combined monopole and dipole receivers with an application in elimination of azimuth ambiguity: Geophysics, https://library.seg.org/doi/abs/10.1190/geo2018-0658.1. DOI: 10.1190/geo2018-0658 [11]许家旗, 胡恒山, 2019, 基于鞍点法与互易性的远探测波场模拟, 应用声学,2019 年5 月, 38(3):293-300, DOI: 10.11684/j.issn.1000-310X.2019.03.002, [10]Xu F, Hu H(胡恒山), 2019, A semi-analytical approach to calculate the reflected wave of an eccentric source in a borehole, Geophysics, 84(1): D1-D9. [9]张超,胡恒山,郑晓波,2019,软地层横波速度的偶极随钻测井反演,地球物理学报,62(6):2286-2293,doi:10.6038/cjg2019M0288. [8]Xu F, Hu H(胡恒山), 2019, A semi-analytical approach to calculate the reflected wave of an eccentric source in a borehole, Geophysics, 84(1): D1-D9. [7]Hu Hengshan, Zhao Chao, Zheng Xiaobo, Inversion of Formation Shear Speed from Dipole Scholte Wave during Logging While Drilling in Slow Formations, Proceedings of the International Congress on Ultrasonics, Honolulu, 2017. Paper No. POMA-D-18-00014. [6]Yufeng Yang ,Wei Guan ,Hengshan Hu ,Minqiang Xu,2017,Numerical study of the collar wave characteristics and the effects of grooves in acoustic logging while drilling, Geophys. J. Int., https://doi.org/10.1093/gji/ggx044. [5]Xiaobo Zheng,Hengshan Hu, 2017, A theoretical investigation of acoustic monopole LWD individual waves with emphasis on collar wave and its dependence on formation, Geophysics, 2017,82(1):D1-D11. DOI 10.1190/GEO2016-0266.1 [4]Yang YF, Guan W, Cui NG, Hu HS, Zheng XB 2016,Simulation and analysis of the collar wave propagation in acoustic logging while drilling. Chinese J. Geophysics((in Chinese), 59(1):368-380. DOI: 10.6038/cjg20160131.杨玉峰,关威,崔乃刚,胡恒山,郑晓波等.2016.随钻声波测井FDTD 模拟及钻铤波传播特性研究.地球物理学报,59(1):368-380. [3]Xiaobo Zheng, Hengshan Hu, Wei Guan, and Jun Wang, 2015,Simulation of the borehole quasistatic electric field excited by the acoustic wave during logging while drilling due to electrokinetic effect, Geophysics, 80(5): P. D417–D427. [2]Xiaobo Zheng, Hengshan Hu, Wei Guan and Jun Wang,2014,Theoretical simulation of the electric field induced by acoustic waves during the seismoelectric logging while drilling, Chinse J.Geophys.(in Chinses), 57(1):320-330.郑晓波, 胡恒山, 关威, 王军, 2014,随钻动电测井中声诱导电场的理论模拟,地球物理学报.地球物理学报,57(1):320-330. [1]Wei Guan, Hengshan Hu and Xiaobo Zheng,2013,Theoretical simulation of the multipole seismoelectric logging while drilling, Geophys. J. Int., (2013) 195, 1239–1250. 4. Distant Reflection Logging(井下声波远探测); [8]Yuan Gao, Hengshan Hu, Jiaqi Xu, 2023, Elastic reverse time migration method for single-well imaging and elimination of azimuthal ambiguity with a combined receiver system, IEEE Transactions on Geoscience and Remote Sensing. DOI 10.1109/TGRS.2023.3328032. [7] Xu, Jiaqi(许家旗), Hengshan Hu, and Qing Huo Liu,2020,.Combination of FDTD With Analytical Methods for Simulating Elastic Scattering of 3-D Objects Outside a Fluid-Filled Borehole. IEEE Transactions on Geoscience and Remote Sensing (2020), DOI: 10.1109/TGRS.2020.3011124,下载网址: https://ieeexplore.ieee.org/document/9165154 [6] 许家旗, 胡恒山,2020,声波远探测中偏心声源的辐射以及接收波场研究,地球物理学报,Vol. 63 (9): 3545-3561,DOI:10.6038/cjg2020N0015。 5] Jiaqi Xu(许家旗), Hengshan Hu,2020, Solutions of P-SV and SV-P waves in single-well imaging through reciprocity relations." Geophysics (2020). DOI: 10.1190/geo2019-0551.,下载网址:https://doi.org/10.1190/geo2019-0551.1 [4] Jiaqi Xu(许家旗), Hengshan Hu, and Zhi Wang, 2019, Asymptotic solution to 3D dipole single- well imaging system with combined monopole and dipole receivers with an application in elimination of azimuth ambiguity: Geophysics, 84(5): D191-D207. https://library.seg.org/doi/abs/10.1190/geo2018-0658.1. DOI: 10.1190/geo2018-0658.1 [3] 许家旗, 胡恒山, 2019, 基于鞍点法与互易性的远探测波场模拟, 应用声学,2019 年5 月, 38(3):293-300. [2] Zhi Wang(王治), Hengshan Hu, Yufeng Yang, 2015 ,Reciprocity relations for the elastodynamic fields generated by multipole sources in a fluid-solid configuration, Geophysical Journal International, 203, 883–892. [1] Yi-de Zhang(张义德), Hengshan Hu, 2014 , A technique to eliminate the azimuth ambiguity in single-well imaging, Geophysics,79( 6); P. D409–D416, DOI:10.1190/GEO2013-0310.1 5. Poromechanics and Acoustic Logging in Porous Formations [23][Yan Zhou, Wei Guan, Changming Zhao, Hengshan Hu, Zhennan He, Xiaojing Zou, Xiaowei Gong, 2023, A computational workflow to study CO2 transport in porous media with irregular grains: Coupling a Fourier series-based approach and CFD, Journal of Cleaner Production 418 (2023) 138037. [22]Chang Su,Wei Guan , Yiguo Yin, Hai Huang, Hengshan Hu,2023, Elastic waves in fluid-saturated porous materials with a couple-stress solid phase,Journal of Sound and Vibration,569 (2024) 117993. [21]Changqing Mu, Yongjia Song & Hengshan Hu (2023): Rupture-induced dynamic pore pressure effect on rupture. Waves in Random and Complex Media, DOI:10.1080/17455030.2023.2182147. [20]Song Y,Hu H,Rudnicki,2016,Dynamic bulk and shear moduli due to grain-scale local fluid flow in fluid-saturated cracked poroelastic rocks: Theoretical model, Journal of the Mechanics and Physics of Solids, 92(July 2016),28–54. DOI 10.1016/j.jmps.2016.03.019. [19]Yongjia Song, Hengshan Hu, and John W. Rudnicki, 2017, Dynamic stress intensity factor (Mode I) of a permeable penny-shaped crack in a fluid-saturated poroelastic solid, International Journal of Solids and Structures , http://dx.doi.org/10.1016/j.ijsolstr.2017.01.034[18]Yongjia Song, Hengshan Hu, and John W. Rudnicki, 2016, Deriving Biot-Gassmann relationship by inclusion-based method,GEOPHYSICS, VOL. 81, NO. 6 (NOVEMBER-DECEMBER 2016); P. D657–D667. [17]Zhi Wang and Hengshan Hu.,2016, Moment tensors of a dislocation in a porous medium,Pure Appl. Geophys., 173 (2016), 2033–2045. [16]Yang YF, Guan W, Cui NG, Hu HS, Zheng XB 2016,Simulation and analysis of the collar wave propagation in acosutic logging while drilling. Chinese J. Geophysics((in Chinese), 59(1):368-380. [15]Xiaobo Zheng, Hengshan Hu, Wei Guan, and Jun Wang, 2015,Simulation of the borehole quasistatic electric field excited by the acoustic wave during logging while drilling due to electrokinetic effect, Geophysics, 80(5): P. D417–D427. [14]Yongjia Song, Hengshan Hu,2013, Effects of squirt-flow in cracks on drained bulk mudulus of porous media, Chinese Journal of Theoretical and Applied Mechanics, 45(3): 395-405. [13]Xiao He; Hengshan Hu; Xiuming Wang,2013, Finite difference modelling of dipole acoustic logs in a poroelastic formation with anisotropic permeability,Geophysical Journal International,192(1), 359–374. doi: 10.1093/gji/ggs024 [12]Wei Guan, Hengshan Hu, 2011,The parameter averaging technique in finite-difference modeling of elastic waves in combined structures with solid, fluid and porous subregions,Communications in Computataional Physics, 10(3),695-715 [11] Li W.,Hu.H.,Zhang B.,Gang T.,2010, Simulation of acoustic well-logging wave field in a radially multilayered fluid-saturated porous formation,Acta Acoustica (in Chinese), 35(4),455-464. [10] Wang J, Hu H. S., Cheng X, 2009,The Transient response of a cylindrical piezoelectric transducer and the excited wavefield in a borehole. Chinese Journal of Geophysics, 2009, 52(5): 1333-1340.DOI:10.3969/j.issn.0001-5733.2009.05.023. [9]Wei Guan, Hengshan Hu, Xiao He,2009,Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation, Journal of the Acoustic Society of America, 125(4), 1942-1950 [8]Xiao He, and Hengshan Hu, 2008,Wave components of acoustic logs in transversely isotropic porous formations, Chinese Journal of Theoretical and Applied Mechanics (in Chinses),2008, 40(5): 663-671. [7] Zhi-Wen Chui, Kexie Wang, Heng-Shan Hu,2004, Energy characteristics of inhomogeneous waves in fluid-saturated porous mediua, Journal of Jilin University (Earth Science Edition),2004,34 (Sup), 76-80. [6] Zhi-Wen Cui, Kexie Wang, Zheng-Liang Cao and Heng-Shan Hu, 2004,Slow wave propagation in BISQ poroelastic model, Acta Physica Sinica,2004,53(9),3083-3089. [5] Hengshan Hu, 2003,Acoustic head wave on the borehole wall in a porous formation and the causes for its accompanying electromagnetic field, Acta Physica Sinica,2003,52,1954-1959. [4] Hengshan Hu, Jiaqi Liu, Kexie Wang.2002. Attenuation and seismoelectric characteristics of dynamically compatible porous media.SEG Technical Program Expanded Abstracts,2002. pp. 1817-182 [3] Hengshan Hu,Kexie Wang,Jiaqi Liu,2002,Attenuation and dynamic compatibility of the fast compressional wave in a porous medium. Chinese J. Computational Physics, 2002,19(3), 203-207 [2] Hengshan Hu and Kexie Wang, Dynamic permeability and related concepts in Biot theory, and their application in modeling acoustic logs. Chinese Journal of Geophysics, 2001,44(1),135-141. ( Chinese Ed.,pp134-141) [1] Hengshan Hu, Jun Ma and Kexie Wang, The choice of Riemann sheets in the calculation of the borehole acoustic waves, Acta Scientiarum Naturalium Universitatis Jilinensis (Journal of Jilin University),1999, issue 4, 66-70. 6. Electrokinetic effects and Seismoelectric Logging [42] Wei Guan, Xing Kou, Jun Wang, Hengshan Hu,2024,Interface detection of near-borehole stratified formation under different permeabilities based on seismoelectric logs: A finite-difference modeling, 234 (2024) 212633. https://doi.org/10.1016/j.geoen.2024.212633. [41] Wang Jun, Gao Yongxin, Guan Wei, Hu Hengshan, 2023. Identification of the seismoelectric field induced by a slow compressional wave at an ultrasonic frequency. Geophysics 88: MR265-MR271. [40]Yin Chenggang, Hu Hengshan,Yu Chunhao, Wang Jun, 2018, Successic measurements of streaming pressure with the same core-holder, J.Appl.Geophys,152:48-55. [39] Wei Guan, Peng Shi and Hengshan Hu, 2018, Contributions of poroelastic-wave potentials to seismoelectromagnetic wavefields and validity of the quasi-static calculation: a view from a borehole model. Geophys. J. Int. (2018) 212, 458–475. Advance Access publication 2017 October 9. [38]Wang J., Hu H, Guan W. and Yin C.G. 2016. Experimental study on electrokinetic properties of porous rock samples. Chinese J. Geophysics ((in Chinese), 59(9):3514-3523. [37]Jun Wang, Hengshan Hu, and Wei Guan,2016, The evaluation of rock permeability with streaming current measurements ,Geophys. J. Int. (September, 2016) 206 (3): 1563-1573 first published online June 19, 2016 doi:10.1093/gji/ggw231 [36]Wang J. Guan W.,Hu HS, Zhu Z. 2016 Electrokinetic experimental studies in borehole model II: localized and radiated seismoelectric field. Chinese J. Geophysics((in Chinese), 59(1):381-390. DOI: 10.6038/cjg20160132. [35]Yang YF, Guan W, Cui NG, Hu HS, Zheng XB 2016,Simulation and analysis of the collar wave propagation in acosutic logging while drilling. Chinese J. Geophysics((in Chinese), 59(1):368-380. DOI: 10.6038/cjg20160131. [34]Wei Guan, Chenggang Yin, Jun Wang, Naigang Cui, Hengshan Hu and Zhi Wang,2015,Theoretical study on the amplitude ratio of the seismoelectric field to the Stoneley wave and the formation tortuosity estimation from seismoelectric logs, Geophys. J. Int. (2015) 203, 2277–2286. [33]Jun Wang; Hengshan Hu; Wei Guan, 2015,Experimental measurements of seismoelectric signals in borehole models, Geophysical Journal International,203 (3): 1937-1945, [32]Xiaobo Zheng, Hengshan Hu, Wei Guan, and Jun Wang, 2015,Simulation of the borehole quasistatic electric field excited by the acoustic wave during logging while drilling due to electrokinetic effect, Geophysics, 80(5): P. D417–D427. [31]Jun Wang, Hengshan Hu, Wei Guan, Hui Li, 2015, Electrokinetic experimental study on saturated rock samples: zeta potential and surface conductance, Geophys. J. Int., 201(2), 869–877. [30]Xiaobo Zheng, Hengshan Hu, Wei Guan and Jun Wang,2014,Theoretical simulation of the electric field induced by acoustic waves during the seismoelectric logging while drilling, Chinse J.Geophys.(in Chinses), 57(1):320-330. [29]Wei Guan, Hengshan Hu and Xiaobo Zheng,2013,Theoretical simulation of the multipole seismoelectric logging while drilling, Geophys. J. Int., (2013) 195, 1239–1250. [28]Guan W., Wang Z., Hu H , 2013, Permeability inversion from the low-frequency seismoelectric logs in fluid-saturated porous formations, Geophysical Prospecting, 61:120-133. [27]Wang Zhi, Hu Heng-shan, Guan Wei, and He Xiao, 2012, Component wave analysis of borehole seismoelectric wavefields in a porous formation, Acta Phys.Sin., 61(5),054302. [26]Zhiwen Cui, Jinxia Liu, Yujun Zhang, KexieWang, Hengshan Hu, 2011, Simulation of Monopole and Multipole Seismoelectric Logging, Advances in Acoustics and Vibration, Article ID 107827, 10 pages, doi:10.1155/2011/107827 [25]Guan W., Wang Z., Hu H.,2011,Component wave analysis of borehole seismoelectric wavefields and permeability inversion from seismoelectric logs , 73rd EAGE Conference, 23-26 May 2011, Vienna, Austria [24]Guan W,Hu HS,Tang TZ et al, 2011,The ratio of the acoustoelectric field to the acoustic pressure in a borehole and its dependence on permeability. Chinse J.Geophys.(in Chinses), 2011,54(6):1660-1671,DOI:10.3969/j.issn.0001-5733.2011.06.026. [23]Hu Hengshan,Guan Wei, 2011, Simulation of the SH wave excited by a horiztonal current loop centered in aborehole surrouded by a porous formation, J. of Natural Science of Heilongjiang Unviserity, 28(3),285-290. [22]Wang J.,Hu H.,Yang G. et al, 2011,Experimental measurements on streaming current and zeta-potential of core samples under the excitation of low-frequency sinusoidal pressure, Chinse J.Geophys.(in Chinses), 2011,54(8):2169-2176,DOI:10.3969/j.issn.0001-5733.2011.08.025. [21] Jin D., Sun B.,Hu H.,Guan W., 2010,Electrokinetic logging:state of the art and future challengs, Well Logging Technology,34(4),309-313. [20] Wang J.,Hu HS.,Xu XR.,et al,2010,Experimental measurement study on rock permeability based on the elctrokinetic effect. Chinese J.Geophys.(in Chinses),2010,53(8):1953-1960, DOI:10.3969/j.issn.0001-5733.2010.08.021. [19] Guan Wei, Hengshan Hu,2009, 2D seismoelectric log simulation using a finite-difference method, 79th SEG meeting, Houston, USA. SEG Technical Program Expanded Abstracts, 2009,2567-2571. [18] Wei Guan, Hengshan Hu, 2008,Finite-Difference modeling of the electroseismic logging in a fluid-saturated porous formation, Journal of Computation Physics, 227(11),5633-5648. [17] Cui Zhi-Wen, Wang Ke-Xie, Hu Heng-Shan and Sun Jian-Guo, 2007,Acousto-electric well logging by an eccentric source and extraction of shear wave, Chinese Physics,16(3):746-752. [16] CUI Zhi-Wen, WANG Ke-Xie, SUN Jian-Guo, ZHU Zheng-Ya, YAO Gui-Jin and HU Heng-Shan, 2007, Numerical Simulation of Shear-Horizontal-Wave-Induced Electromagnetic Field in Borehole Surrounded by Porous Formation, Chinese Phys. Lett. 24 3454-3457 [15] Wei Guan and Hengshan Hu, 2007,Finite-difference modeling of electroacoustic logging response in a fluid-saturated porous formation,SEG Technical Program Expanded Abstracts, 2007, pp.511-515 [14] Hengshan Hu, Wei Guan, Jerry Harris,2007, Theoretical simulation of electroacoustic borehole logging in a fluid-saturated porous formation, Journal of the Acoustic Society of America, 122(1),135-145. [13] W.Guan, H.Hu, Z.Chu, Formulation of the acoustically-induced electromagnetic field in a porous formation in terms of Hertz vectors and simulation of the borehole electromagnetic field excited by an acoustic multipole source, Acta Physica Sinica,2006,55(1): 267-274 [12]Hengshan Hu, Wei Guan, Kexie Wang, 2005,The electromagnetic field accompanying the acoustic head wave and the radiating electromagnetic wave during acousto-electromagnetic well logging, Proceedings of the third Biot conference on Poromechanics, Oklahoma, USA, pp593-599 [11] Hengshan Hu, Jiaqi Liu, Simulation of well logs of the acoustically-induced electromagnetic field in a porous formation, Acta Mechanica Sinica,2004,36(4),407-413 [10] Hengshan Hu, Acoustic head wave on the borehole wall in a porous formation and the causes for its accompanying electromagnetic field, Acta Physica Sinica,2003,52,1954-1959 [9] Hengshan Hu and Jiaqi Liu, A comparison between Potapof@#%s and Pride@#%s equations for seismoelectric waves, Chinese Journal of Geophysics, 2003, v46, 107-112 [8] Hengshan Hu, Jiaqi Liu and Kexie Wang, Simulation of acousto-electric well logging based on simplified Pride equtaions, Chinese Journal of Geophysics,2003, v46, 259-264 [7] Hengshan Hu and Jiaqi Liu.2002. Simulation of the converted electric field during acoustoelectric logging. SEG Technical Program Expanded Abstracts,2002, pp. 348-351. [6] Hengshan Hu, Jiaqi Liu, Kexie Wang.2002. Attenuation and seismoelectric characteristics of dynamically compatible porous media.SEG Technical Program Expanded Abstracts,2002. pp. 1817-182 [5] Hengshan Hu and Kexie Wang, Numerical simulation and analysis of acousto -electric well logging, Proceedings of the 5th SEGJ International Symposium, Tokyo, Japan, Jan.24-26,2001. pp325-330. [4] Hengshan Hu, Changwen Li, Kexie Wang and Zhengya Zhu,2001, Experimental study on coupled acoustic and electromagnetic waves in model wells. Well Logging Technology, 2001,25(2), 89-95. [3] Hengshan Hu., Kexie Wang, and Jingnong Wang, 2000, Simulation of acoustically induced electromagnetic field in a borehole embedded in a porous formation, Borehole Acoustics Annual Report, Earth Resources Laboratory, Massachusetts Institute of Technology.Paper No.13. [2] Hengshan Hu and Kexie Wang, 2000,Coupled acoustic and electromagnetic waves around a borehole embedded in a porous formation, part 2: simulation of acoustoelectric well logging. Well Logging Technology, 2000,24(1),3-11. [1] Hengshan Hu and Kexie Wang, Coupled acoustic and electromagnetic waves around a borehole embedded in a porous formation, part 1: Theory. Well Logging Technology, 1999, 23(6), 427-432. 7. Earthquake: Coseismic Electromagnetic Field, Moment Tensor in Special Media [15] .Li, W., & Hu, H. (2022). Seismic sources in stress-induced anisotropic media. Journal of Geophysical Research: Solid Earth, 127, e2021JB023915. https://doi.org/10.1029/2021JB023915 [14] Yongxin Gao, Dongdong Wang, Jian Wen, Hengshan Hu, Xiaofei Chen, Cheng Yao, Electromagnetic responses to an earthquake source due to the motional induction effect in a 2_D layered model, Geophys. J. Int.: 2019 ,219,563–593. [13]Yongxin Gao, Dongdong Wang, Cheng Yao, Wei Guan, Hengshan Hu, Jian Wen, Wei Zhang, Ping Tong and Qingjie Yang Simulation of seismoelectric waves using finite-difference frequency-domain method: 2-D SHTE mode, Geophys. J. Int.: 2019 ,216 ,414–438 [12]Gao, Y., M. Wang, H. Hu, and X. Chen (2017), Seismoelectric responses to an explosive source in a fluid above a fluid-saturated porousmedium, J. Geophys. Res. Solid Earth, 122, 7190–7218, doi:10.1002/2016JB013703 [11]Gao, Y., F. Huang, and H. Hu (2017), Comparison of full and quasi-static seismoelectric analytically based modeling, J. Geophys. Res. Solid Earth, 122, doi:10.1002/2017JB014251. [10]Zhi Wang and Hengshan Hu.,2016, Moment tensors of a dislocation in a porous medium,Pure Appl. Geophys., 173 (2016), 2033–2045,DOI 10.1007/s00024-015-1220-9. published on line(2015) [9]Yongxin Gao, Jerry M. Harris, Jian Wen, Yihe Huang, Cedric Twardzik, Xiaofei Chen, and Hengshan Hu, 2016, Modeling of the coseismic electromagnetic fields observed during the 2004 Mw 6.0 Parkfield earthquake,Geophys. Res. Lett,43 ,620–627 [8]Gao, Y., X. Chen, H. Hu, J. Wen, J. Tang, and G. Fang (2014), Induced electromagnetic field by seismic waves in Earth’s magnetic field, J. Geophys. Res. Solid Earth, 119, 5651–5685,doi:10.1002/2014JB010962. [7]Yongxin Gao, Xiaofei Chen, Hengshan Hu,Jie Zhang,2013, Early electromagnetic waves from earthquake rupturing: II. validation and numerical experiments, Geophys.J.Int. 192, 1308–1323. doi: 10.1093/gji/ggs097 [6]Yongxin Gao, Xiaofei Chen, Hengshan Hu,Jie Zhang,2013, Early electromagnetic waves from earthquake rupturing: I. theoretical formulations,Geophysical Journal International, 192, 1288-1307. doi: 10.1093/gji/ggs096 [5]Hengshan Hu, Yongxin Gao, 2011, Electromagnetic Field Generated by a Finite Fault due to Electrokinetic Effect, Journal of Geophysical Research-Solid Earth. 116, B08302, doi: 10.1029/2010JB007958. [4]Yongxin Gao, Hengshan Hu, 2010, Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium, Geophys. J. Int., 181, 873–896. (Because of this paper, Gao won Geophysical Journal Interntaional Student Author Award for the year 2010 ) [3]Hengshan Hu and Yongxin Gao, 2009,The electric field induced by the fast P-wave and its nonexistence in a dynamically compatible porous medium, 79th SEG meeting, Houston, USA. SEG Technical Program Expanded Abstracts, 2009,2170-2174 [2]Yongxin Gao, Hengshan Hu,2009, Numerical simulation and analysis of seismoelectromagnetic wave fields excited by a point source in layered porous media. Chinese Journal of Geophysics, 2009,52(8), 2093- 2104.DOI:10.3969/j.issn.0001-5733.2009.08.018. [1] Hengshan Hu, Jiaqi Liu, Kexie Wang.2002. Attenuation and seismoelectric characteristics of dynamically compatible porous media.SEG Technical Program Expanded Abstracts,2002. pp. 1817-182 基本信息 名称 ●哈尔滨工业大学航天学院力学系教授(2003年1月至今)、力学博士生导师(2003年3月起)。 ●科研方向 长期从事弹性波动力学的教学和科研工作,侧重孔隙介质力学与声学、岩石物理与声测井、地震波及地震电磁研究。 主持国家自然基金面上项目6项(其中两项在结题时被基金委评为“特优”)。 作为合作单位负责人参与国家自然基金重点项目1项。 主持完成国家公益事业(地震行业)科研专项1个和石油测井项目多个。 发表SCI期刊论文107篇 (含学生第一作者的论文,见 Publications栏目), ● 指导的研究生获奖情况 黑龙江省优秀硕士论文奖; 哈工大优秀博士论文奖; 中国力学学会优秀博士论文提名奖; 中国地球物理学会优秀博士论文奖; 国际期刊Geophys.J.Int.的优秀学生作者奖。 ● 教师荣誉 2012年入选“黑龙江省优秀研究生导师“。 2017年入选哈尔滨工业大学首批 “金牌授课教师”。 2019年获哈尔滨工业大学“教学突出贡献奖”。 2020年获哈尔滨工业大学“立德树人先进导师”荣誉称号。 主要任职与学术兼职 名称 哈工大航天学院教授, 曾任力学系教授委员会主任; 哈工大力学学科学位分委会成员,黑龙江省博士后专家; 中国声学学会理事,中国声学学会检测声学分会副主任,《应用声学》编委; 中国地球物理学会井孔地球物理专业委员会委员,中国地震学会地震电磁专业委员会委员. 国家自然基金委员会地学部青年、面上、重点、优青、杰青、重大仪器项目通讯评议人、联合基金项目会评专家. 教育经历 名称 学历与学位 1978—1982:武汉水利电力大学 (今武汉大学水利水电学院)学生,获学士学位 1983—1986:武汉水利电力大学固体力学研究生,获硕士学位 1997—2000:吉林大学物理系博士研究生,获博士学位 国外大学进修和研究经历 1999.11—2000.01 麻省理工学院地球大气与行星科学系地球资源实验室 2006.02—2007.03 斯坦福大学地球物理系 (Visiting Scholar, Geophysics Department, Stanford University) 2013.01—2013.03 法国傅里叶大学(格勒一大)地学院访问教授Visiting Professor, Geoscience school, Fourier University (Grenoble No.1 University) 工作经历 名称 时间 工作经历 1982.7—1983.8 华北水利水电学院水工教研室助教 1986.7—1988.12 湖北省水利水电科学研究院从事研究与设计工作 1989—1997 中国石油天然气总公司(原石油部)江汉测井研究所工程师、高级工程师 2000—2002 哈尔滨工业大学力学博士后 2003.1至今 哈尔滨工业大学航天学院航天科学与力学系教授 2003.3至今 哈尔滨工业大学力学博士生导师 授课简介 名称 1. 航天学院材料力学团队责任教授(2009年1月-2022.12)。哈工大材料力学课程是国家精品资源课程(入选时,由国家首批教学名师张少实教授牵头)。 为工程力学、飞行器设计等专业本科生讲授“材料力学”课程,连续9年获得前5%的评价,3次为航天学院最高分。 2017年入选哈尔滨工业大学(首批)“金牌授课教师”。 2019年获哈尔滨工业大学“教学突出贡献奖”。 2. 连续十多年讲授研究生“弹性动力学”、博士生“高等弹性动力学”课程。 负责的“弹性动力学”入选哈工大首批研究生精品课程、黑龙江省研究生精品课程建设项目。(详细见下方) 3. 曾为工程力学专业和相近专业讲授“空气动力学”(2003-2005)、“优化设计”(2007-2009)。 附: 引用与抄袭——从三句古诗文谈起Hu HS 重复-引用-抄袭-Rev.pdf 弹性动力学(研究生课程) 名称 * 2003年至今,连续多年讲授“弹性动力学”。负责的该课程,2014年入选哈工大首批研究生精品课程 2023年12月入选黑龙江省研究生精品课程建设项目。 。 * 关于弹性动力学理论与应用的学术研究情况,请看 publiications、波动与岩石物理、学术交流等三个栏目。这里只给出 教学论文: [1] 胡恒山,2018, 拉梅常数的力学意义与剪切模量出现于纵波速度公式的原因(全文链接), 地球物理学进展, 33(1):219-222,doi:10.6038/pg2018BB0432. [2] 胡恒山. 横波引起的转动及其孪生剪切变形(全文链接). 力学与实践. 2018,40(2),207-209. [3] 柱面坐标系下弹性P、SV、SH波的定义(文件待加载) [4] 复反射系数与反射波频散(文件待加载) [5] Biot 孔隙介质弹性模量(及Skempton系数等) [6] 速度频散与介质品质因子对弹性波波形变化的影响 材料力学(面向多个学院的本科生核心课程) 名称 教学论文 胡恒山,宋永佳. 斜面应力公式的适用条件 力学与实践, 2019, 41(4): 445-448. 全文链接: http://lxsj.cstam.org.cn/CN/10.6052/1000-0879-18-486 教学体会 1. 应力变换、应变变换、惯性矩变换的矩阵表示 2. 能量法解冲击问题的局限性 3. 沟通增加理解,联想激发创新——本科教学中的跨课程引导 4. 浸没孔隙介质体积模量等于固相体积模量的材料力学法证明 推荐参考书 1. Russell Charles Hibbeler, 2013, Mechanics of Materials, 9th Ed, Pearson Prentice Hall. (或: 机械工业出版社,2013,原书第8版的英文影印版) 2. J M Gere and B J Goodno,2009, Mechanics of Materials, 7th Ed, Cengage Learning. (机械工业出版社,2011影印版,书名改为Strength of Materials) 材料力学老师们合影于2013年5月。 名称 前排中间是国家首批教学名师张少实教授。 硕士研究生 名称 毕业31人。 其中何晓、舒孟炯、李巍、尹诚刚、宋永佳、王泽凡、段韵达、陈辉获校优秀硕士论文奖; 其中何晓获省优秀硕士论文奖,郑晓波入选省优秀毕业生。 在读硕士研究生2人。 花甲之年,不再招生。 博士研究生 名称 毕业15人。其中:关威入选“校正在进行的优秀博士论文作者”(2007年),高永新获“校优秀博士论文”奖(2012年),宋永佳获“中国力学学会2017年度优秀博士论文提名奖”,并入选国家博士后创新计划(博新计划,2017),许家旗获中国地球物理学会优秀博士论文奖(2022)。此外,博士生高永新发表的论文Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium 获国际地球物理领域权威期刊Geophys. J. Int. 优秀学生作者奖,也是我国学者首次获该奖。 博士毕业生均在国家重点高校或国家直属科研机构工作,其中最先毕业的4名博士(关威、何晓、高永新、王军)均在完成国家自然基金青年项目并且结题“特优“之后,各自主持2项以上国家自然基金面上项目。 在读博士生5人。 分别开展波动力学基本理论、孔隙介质波动力学、随钻远探声波测井、非均匀介质声场理论与数值模拟、地震力学研究等。 花甲之年,不再招生。 博士后 名称 在站博士后2人,出站博士后2人。 2016年师生合影 名称 2009-2012届博士回校,与胡老师在步行街合影 名称 与早期毕业的4名博士合影,很高兴。他们(关威、何晓、高永新、王军)每个人都已主持多项国家科研项目了。 研究领域 名称 波动理论与应用: 1. 弹性动力学(固体声学) 弹性波(声波)的激发、传播、接收与信号处理,声学无损检测。 2. 地球物理与石油工业中的波动问题 (1)孔隙介质波动力学, 基础课件:流体饱和孔隙介质的几个系数.pdf (2)声波测井、随钻远探声测井、动电测井, (3)地震力学,地震波及其诱导电磁场。 3. 计算声学 自主开发波场模拟软件,计算非均匀弹性介质、孔隙介质、各向异性介质、动电耦合介质中的波场。 岩石力学与岩石物理 1. 油气储层力学与井孔力学,裂隙-孔隙介质动态弹性模量与波的频散与衰减机制 2. 孔隙岩石动电耦合实验 主要学术贡献 在国际上最早基于孔隙介质弹性波-电磁场耦合理论模拟了动电测井全波波形,分析了波的传播特性;继而将声波视为准静态电磁场的空间波动激励源,提出了单向转化准静态计算方法;指导博士生(有限差分)数值模拟了动电测井响应、并在模型井中观测到了与理论预期相符的动电信号;与博士生一起,给出了孔隙介质中双力偶源激发弹性波和电磁场的格林函数,在国际上最早模拟了天然地震波引起的动电电磁场;针对横观各向同性(TI)地层,与博士生一起,证明了除一类特殊情况外,对称轴与井轴平行的TI地层井孔中,伪瑞利波、弯曲波、螺旋波的低频极限均趋于井轴向横波速度,并给出了这类特殊地层满足的条件,通过数值模拟给出了倾斜TI介质中弹性地层和孔隙地层中声波测井响应的特点;揭示了随钻声波测井中钻铤波既在井中又在地层中传播的特点,指导博士生完成了多级随钻声测井全波和分波的计算,获得了完整的分波速度和衰减频散曲线,解释了内刻槽能更有效拟制钻铤波的物理机制;为削弱钻铤波,理论模拟了随钻动电测井响应,阐明了动电波仍含有钻铤波波群,但其在全波中的相对幅度低于声信号;针对含井孔结构的声场-弹性波场,给出了波动互易关系,并用于远探测声波测井的快速模拟;指导博士生从弹性波频散和衰减角度给出了非均匀孔隙地层的有效Biot介质模型、有效粘弹性模型。与博士生一起,研究了初应力和初应变对地震波传播、对剪切断层地震矩张量的影响,研究了孔隙介质中任意位错源的等效地震矩张量。在以上研究过程中,自主编程计算模拟了复杂地层中的弹性波场、震电耦合波场。 论文发表于J.Mech.Phys.Solids 和 IJSS 等力学领域重要期刊,Geophys.J.Int、JGR-Solid Earth、GRL、Geophysics 、PAAG 等地球物理学领域重要期刊,J.Comptut.Phys. 等计算物理领域重要期刊。 但是,关于动电测井的最早论文1999-2000年连载于我国《测井技术》,其部分英译稿被收入美国麻省理工学院(MIT)地球大气行星科学系(EAPS)地球资源实验室(ERL)2000年度学术文集,后者被国外学者引用。 学会任职: 中国声学学会理事、中国声学学会检测声学分会副主任,中国地震学会地震电磁专业委员会委员、中国地球物理学会井孔地球物理专业委员会委员。 ★学术论文请看Publications 栏目 ★特邀报告请看"波动研究"栏目 ★部分学术活动照片请看“学术交流”栏目 波动与岩石物理研究组 名称 照片摄于2017年夏,后来参加工作的许家旗博士不在此照片中。 胡恒山教授(左2),博士生导师。 关威教授(左1),博士生导师,个人主页 http://homepage.hit.edu.cn/pages/weiguan。 研究方向:波动力学、弹性波理论与测井应用、计算力学和声学。先后讲授材料力学、变分法、弹性力学。 主持国家自然科学基金青年项目、面上项目,以及中国博士后特别资助项目、教育部博士点基金等项目。 完成的国家自然科学基金青年项目被基金委评为“特优”。2022年获黑龙江省青年科技奖。 王军教授(右2),博士生导师,个人主页 http://homepage.hit.edu.cn/pages/wangjun。 研究方向:检测声学与动电耦合效应实验研究。讲授材材料力学等。完成的国家自然科学基金青年项目被基金委评为“特优”。负责多项国家自然科学基金项目。 宋永佳教授(右1),2019年底入选“青年拔尖人才副教授”,2023年1月任教授。个人主页http://homepage.hit.edu.cn/songyongjia. 研究方向:孔隙介质的波动力学与断裂力学。2017年获得“博士后创新人才支持计划”(简称“博新计划”)资助,获中国力学学会优秀博士论文提名奖、黑龙江省力学学会优秀博士论文奖。主持国家自然科学基金青年项目、面上项目等。 许家旗副教授, 获中国地球物理学会2022年度优秀博士论文奖,2024年1月任副教授, 从事波动力学和计算声学研究。个人主页 http://homepage.hit.edu.cn/xujiaqi 。 张超博士,2022年9月任哈工大力学助理研究员,个人主页 http://homepage.hit.edu.cn/zhangchaoo。 在校学生:博士生7人,硕士生7人,本科生4人。 胡恒山主持的国家级基金项目 项目名称 孔隙介质中的弹性—电磁耦合波传播机制研究 项目来源 国家自然科学基金项目 开始时间 2003-01-01 结束时间 2005-12-01 项目经费 26 担任角色 负责 项目类别 纵向项目 项目状态 完成 简单介绍 项目名称 横向各向同性地层井孔声场分析与剪切模量和渗透率反演 项目来源 国家自然科学基金项目(40874062) 开始时间 2009-01-01 结束时间 2011-12-31,结题时被基金委地学部评为“特优” 项目经费 43 担任角色 负责 项目类别 纵向项目 项目状态 完成 简单介绍 项目名称 岩石动电实验与地震诱导的电磁场模拟 项目来源 公益性行业(地震)科研专项。科技部、中国地震局 开始时间 2009-01-01 结束时间 2012-12-31 项目经费 79 担任角色 负责 项目类别 纵向项目 项目状态 完成 简单介绍 项目名称 岩样交变动电耦合系数实验测量与动电耦合机理研究 项目来源 国家自然科学基金面上项目 开始时间 2012-01-01 结束时间 2015-12-01,结题时被基金委地学部评为“特优” 项目经费 64 担任角色 负责 项目类别 纵向项目 项目状态 完成 简单介绍 项目名称 随钻震电波传播理论研究与地层纵横波速度反演 项目来源 国家自然科学基金面上项目 开始时间 2014-01-01 结束时间 2017-12-31 项目经费 82 担任角色 负责 项目类别 纵向项目 项目状态 完成 简单介绍 项目名称 随钻测量中的非轴对称井孔声场 项目来源 国家自然基金重点项目(与中科院声学所合作) 开始时间 2018.01 结束时间 2022.12 项目经费 哈工大100万 担任角色 负责 项目类别 纵向项目 项目状态 完成 简单介绍 项目名称 基于距离无关算法的远探测声场模拟研究 项目来源 国家自然基金面上项目(11972132) 开始时间 2020.01 结束时间 2023.12 项目经费 62万 担任角色 负责 项目类别 纵向项目 项目状态 完成 简单介绍 井中声波远探测是近年提出的一种探测井外较远地质界面或结构的声波测井技术。井外界面的存在使介质结构呈现非轴对称性,人们无法获得声场的准确解析解,通常采用有限差分法模拟声场,但有限差分计算的运算时间随着探测距离增大而显著增加。本项目旨在研究开发计算工作量与距离无关的两种远探测声场计算方法,并利用这样的算法研究地层粘弹性、各向异性对远探测声场特性的影响。主要研究内容有:第一,针对平面反射界面情况,把基于最速下降积分法、镜像虚源法、互易关系的近似解析算法用于粘弹性地层和孔隙地层的远探测声场模拟,研究反射信号的强度和频移与地层耗散特性的关系;第二,研究横观各向同性地层中远探测声场的模拟方法和波场特点;第三,针对溶洞探测问题,采用三维边界元计算模拟井外溶洞的反射信号。因计算工作量不随距离而增大,近似解析算法和边界元法可为远探测的正演模拟、为远探测结果的及时评价提供有效手段。 项目名称 受静应力作用的介质中动态位错的等效地震矩张量 项目来源 国家自然基金面上项目(12272107) 开始时间 2023.01 结束时间 2026.12 项目经费 55万 担任角色 负责 项目类别 纵向项目 项目状态 进行中 简单介绍 断层位错辐射地震波的波源可以看成为地震矩张量。断层区域在地震发生前一定受较大的静应力作用,但前人在推导地震矩张量时没有考虑静应力。本项目基于叠加在有限静变形上的小应变波理论和断层边界条件,研究静应力对地震矩张量的影响。由于应力引起等效弹性系数的各向异性,剪切位错也会引起非双力偶分量。 本栏目内容 名称 一、推荐教材 二、特邀报告 三、推荐网站 推荐教材 名称 弹性波 Acoustic Fields and Waves in Solids, vol 1 and vol 2, Auld B.A.,1973. 第一卷的中译本:固体中的声场和波,孙承平译,1982,科学出版社.弹性波和电磁波一起讲,侧重弹性波,特别适合有一定物理学基础而希望学习各向异性介质中波动问题的读者。 Quantitative Seismology, Aki K. and Richards P.G., 2nd ed., University Science Books,2002. 地震学的经典教材,在波动理论方面有深度,适合于数学和固体力学基础好的读者。从事弹性波研究的学者(即使不研究天然地震)也不妨一读。此书1980年第一版分上、下两卷,国际影响力高。 Elastic Wave Propagation and Generation in Seismology, Pujol J. 2003, Cambridge University Press.此书比Aki and Richards的书易懂,公式推导也够细致,是学习地震学的一本好教材。 An introduction to Seismology. Earthquakes, and Earth Structure, Seth Stein and Michael Wysession,2003,Blackwell Publishing. 此书有2020年中译版(梁春涛等译,科学出版社)。对于本科没学过地球物理而立志于研究天然地震的研究生,值得一读。看 Aki,当正襟危坐,集中精力,循序渐进,动笔细推导;看Stein, 可茶余饭后,日积月累,不妨跳跃,边看边琢磨。 Wave Propagation in Elastic Solids,Achenbach,J.D., 1973.中译本:弹性固体中波的传播,徐植信、洪锦如译,同济大学出版社,1992.弹性动力学经典教材,侧重弹性波的力学基本理论,应用针对性不强,不涉及发射器,不涉及激发、接收和信号处理。 Ultrasonic Waves in Solid Media,Rose, J L,Cambridge University Press,1999.侧重导波和面波,适合于对检测声学感兴趣的读者。 Acoustics of porous media, Bourbié T, Coussy O, Zinszner B,1987,Gulf Publishing Company.流体饱和孔隙介质中声波(弹性波)的基础书,对Biot介质中声波的传播讲解得好。 Cheng, A. H.-D.,Poroelasticity, Springer International Publishing: Switzerland, 2016.作者程宏达教授是Biot奖得主。此书详细讲解孔隙介质力学的线性理论,其中的第9章介绍孔隙介质波动理论。 Waves Fields in Real Media, 3rd Ed,Carcione J. M.,2015, Elsevier.本书主要章节为粘弹性、各向异性、流体饱和孔隙介质弹性波的传播,以及波动互易性,侧重地下介质的波动。 Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion,Bleistein,Cohen,and Stockwell, 2000,Springer.此书结合地震勘探讲探测目标的波动方程反演,中文版(张文生 译:多维地震成像、偏移和反演中的数学,科学出版社,2004)。 James F.Doyle, 结构中波的传播,第二版,吴斌等译,科学出版社,2003.(Wave Propagation in Structures, 2nd Ed., 1997,Springer) 岩石力学和物理 Cheng, A. H.-D., Poroelasticity, Springer International Publishing: Switzerland, 2016.(介绍见上) Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Wang, H.F., Princeton University Press,2000.关于饱和流体孔隙介质(Fluid-saturated Porous Medium) 的力学入门教材。 Fundamentals of Rock Mechanics, 4th Edition, Jaeger, Cook and Zimmerman, 2007, Blackwell Publishing.岩石力学经典教材,包括岩石的变形和应力、非弹性行为、水力学特性、波动、细观力学模型、实验方法。 Rock Physics Handbook, Mavko G, Mukerji T, Dvorkin J, 2009,Cambridge University Press,2nd Edition.总结岩石物理(特别岩石中的弹性波特性)研究成果的手册,对各种理论模型和方法做了简要介绍和评述。 岩石物理学,陈颙、黄庭芳、刘恩儒,2009,中国科学技术大学出版社。这是第一作者1986书《地壳岩石的力学性能——理论基础和实验方法》的扩展。 大变形弹塑性理论(上册),陈明祥,2022,科学出版社。此书详细介绍了张量和连续介质力学,逻辑严谨,且由于参考构形与当前构形采用相同的笛卡尔坐标系,避免了繁琐的数学表述,突出了力学概念,并有不少例子。 Mechanics of Hydraulic Fracturing, Ching H. Yew and Xiaowei Weng, 2015,Gulf Professional Publishing.此书讲水力压裂的力学及数值解法。 特邀报告与讲座 名称 [28]应力诱导各向异性介质中的剪[25] 受初应力断层的剪切位错之等效地震矩张量,大会特邀报告(35分钟),第一届波动力学前沿与应用学术会议,2023年10月20-22日,北京。 [27]应力诱导各向异性介质中的剪切位错地震源,大会邀请报告,25分钟,中国地球物理学会第1届弹性波地震技术学术研讨会,吉林长白山,2023年8月19日。 [26] 初应力和界面不完美粘结对弹性波反射与透射的影响,大会特邀报告(25分钟),第14届UPC测井技术国际学术研讨会,地点,中国石油大学,青岛。2023年9月8-10日。 [25] 胡恒山,弹性波互易原理与远探测声场快速模拟,测井科技高端论坛,2022年9月15日,陕西宾馆,西安,中国石油学会测井专业委员会主办,中国石油测井有限公司承办。 [24]经典弹性波理论中纵波引起的切应变与横波引起的转动,2021年7月4日和7月11日,地球物理学线上学术报告(中国科学院地球物理所李幼铭研究员主持,每次报告讲1小时加讨论1小时)。 [23]井外远探测声场模拟的距离无关算法,第二届复杂油气藏勘探开发与测井技术研讨会,2021年6月23-25日,西安。 [22]岩石动电效应实验与电磁波场模拟,地球物理学线上学术报告(中国科学院地球物理所李幼铭研究员主持),2021年2月7日。 [22]互易性与井中远探测声场, SEG 岩石物理与地下流体检测国际研讨会,2020年12月18- 20日, 南京。 [21]井外界面反射声场的解析法模拟,全国压电与声波理论及器件应用研讨会,特邀报告,2019年1月11-14日,哈尔滨. [20]井内外声场的几个互易关系,Reciprocity relations for acoustic fields inside and outside a borehole,第九届全国储层声学与深部钻探技术前沿研讨会 ,5-7 Nov 2018, Beijing. [19]Reciprocity relations for monopole and dipole source single well imaging, SEG Workshop on Borehole Geophysics, Guilin.28-30 October 2018. [18]震电测井波场的模拟与分析,2018全国检测声学学术会议,2018年10月17-20日,重庆。 [17]随钻声波测井中Scholte波与钻铤波 (The Scholte wave and the collar wave in acoustic logging while drilling) 第8届全国储层声学与深部钻探前沿研讨会,2017年10月23-25日,北京怀柔。 [16]随钻声波测井的分波模拟与刻槽效果数值分析(50分钟报告), 第7届全国储层声学与测井技术前沿研讨会,2016年11月6-8日,北京怀柔。 [15][复杂介质中弹性波的互易关系及其应用(50分钟报告),第6届全国储层声学与测井技术前沿研讨会,2015年10月9-11 日. [14]孔隙地层动电测井的实验测量与理论模拟,非均质材料波动力学研讨会,北京,2015年6月19-21日。 [13]Towards further a understanding of seismoelectric signals ( invited talk ), American Geophysical Uniion (AGU) Seismoelectric Session,旧金山,2014年12月。 [12]随钻声波测井中的钻铤波(30分钟报告),全国检测声学会议,2014,北京怀柔。 [11]井孔声场与地震电磁场——地学目的与波动模型(2小时报告),固体弹性波动力学新发展高级讲习班,国家自然科学基金委员会(数理学部力学处)主办,北京交通大学承办,2014年8月6日-8日,北京。 [10]套管井压裂窜槽的力学机制与对策(50分钟), 2014年8月22日,大庆油田公司2014年度测试技术学术研讨会, 大庆。 [9]动电测井的现状与展望。2013年夏,中国石油学会测井年会,乌鲁木齐。 [8]孔隙介质中的弹性波与动电效应, 2013年5月31日,中国科学技术大学地球物理系,合肥。 [7]拉梅常数的意义及纵波速度与剪切模量有关的原因, 2012年11月,中国科学院声学研究所(北京) [6]微裂隙“欠松弛”流体压强对排水体积模量和衰减系数的影响, 2012年11月,第3次全国储层声学前沿研讨会, 中国科学院声学研究所(北京) [5]弹性波的教学与研究,纪念徐芝纶教授诞辰100周年学术交流大会,2011,南京。 [4]动电测井的波动理论与岩样实验基础(2小时学术报告),2011,石油大学(北京)。 [3]动电效应测井及其岩石物理基础(3小时学术讲座),2010,中国科学院声学研究所(北京), 岩石声学物理与声波测井讲习班。 [2]各向异性孔隙地层声波测井(3小时学术讲座),2010,中国科学院声学研究所(北京),岩石声学物理与声波测井讲习班。 [1]横观各向同性地层声波测井波场的模拟,2009,石油大学(青岛),声波测井研讨会。 推荐网站 名称 Poronet: http://www.olemiss.edu/sciencenet/poronet/ 地球物理学报 http://118.145.16.227/geophy/CN/volumn/home.shtml Geophysics http://scitation.aip.org/geophysics Geophys.J.Int. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-246X http://www.blackwellpublishing.com/journal.asp?ref=0956-540x J.Geophys.Res-Solid Earth http://www.agu.org/journals/jb/ Geophys.Prosp http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2478 J.Acoust.Soc.Am http://asadl.org/jasa/ J.Sound.Vib. http://www.journals.elsevier.com/journal-of-sound-and-vibration/ J.Mech.Phys.Solids http://www.journals.elsevier.com/journal-of-the-mechanics-and-physics-of-solids/ 2017年,在第6次Biot孔隙介质力学会议上,与法国同行合影。 名称 2017年7月,课题组多名师生赴巴黎参加第6次Biot孔隙介质力学会议。参加此次会议的中国研究组中,哈工大波动与岩石物理课题组宣读的论文篇数最多。 2019年5月,地球物理学家Tobias Muller 教授来哈工大一周,讲授孔隙介质弹性波。 名称 9年前,Muller 教授和我都是声学所举办的首次储层声学会议(当时称为“岩石声学物理与声波测井讲座“,讲座为期五天)的主讲人。 2017年胡恒山与斯坦福大学地学院副院长Jerry Harris 教授合影。 名称 胡恒山曾在斯坦福大学地球物理系访问一年(2006-2007)。 Jerry Harris 教授曾任(国际)勘探地球物理学家协会(SEG)副主席,斯坦福大学地球物理系主任。 2017年Hariis 教授应邀出席储层声学与深部钻探前沿研讨会,并做邀请报告。 图为会议茶歇时的合影,摄于中国科学院大学雁栖湖校园。 2017年9月美国西北大学Rudnicki教授做系列学术报告,内容为孔隙介质力学、岩石本构与强度、地震与断层应变局部化。 名称 紧张的学术交流之余,Rudnicki教授观摩了哈工大教工太极拳练习,观看了“关东古巷”的东北地方戏表演,还爱上了中国书法。 John W.Rudnicki教授获得过许多奖项。其中,2006 因孔隙介质力学方面的贡献获美国土木工程师协会(ASCE)的Biot奖 (Maurice A. Biot Medal每年只授予1人);2011因岩石强度与破坏理论方面的贡献获美国机械工程师协会(ASME)的德鲁克奖(Daniel C. Drucker medal,每年只授予1人);2014年获工程科学奖(Engineering Science Medal,每年只授予1人)。 2016年9月,地球物理学家、中国科学院院士、中国科学技术大学陈晓非教授来校做了关于地震相图与超剪切破裂的学术报告,并与波动课题组师生合影。 名称 2016年9月,国际岩石物理与测井协会杰出科学成果奖得主唐晓明教授来访,做声波测井的系列学术报告。 名称 2016年3月,挪威科技大学董和风教授来访,并做海洋声学探测方面的学术报告。 名称 2014年12月胡恒山与王军、高永新参加美国地学联合会(AGU)会议。会后合影于斯坦福大学 名称 2012年参加EGU会议,胡恒山与法国傅立叶大学Michel Dietrich教授合影于维也纳 名称 2010年, 中国科学院声学研究所组织“岩石声学物理与声波测井讲座”(即首届储层声学与测井研讨会),胡恒山应邀做主讲人之一。 名称 照片是胡恒山与主持人王秀明研究员及主讲人(T. Muller 和 M. Brajanovski )合影。 主讲人还有张海澜研究员,但合影时不在场。 2009年与博士生参加中国地球物理年会(合肥,中国科学技术大学)。 名称 照片上的三位博士研究生,如今都是响当当的博士生导师了。 何晓(右一)现为中国科学院声学研究所研究员,关威(左二)、高永新(左一)现在分别在哈尔滨工业大学、合肥工业大学任教授。 2006年SEG会议上与三位老师辈华人学者合影于美国新奥尔良。 名称 王克协教授(右一),我的导师,90年代初曾任吉林大学物理系主任,后创建声学系。他是我国声波测井理论的开拓者,我国最早理论模拟声波测井全波的声学家。他还在国内最早开展了多方面研究,例如:以储层探测为目标的孔隙介质声学研究、以地应力评价为目标的声弹性学研究。王老师不仅长期为物理系讲授理论力学,著有《经典力学》,而且以科研引领教学,在完成11项国家自然基金项目(1983年的项目叫中国科学院自然基金项目)的同时开设了孔隙介质声学、非线性连续介质力学、波动信号处理等课程。他讲课激情洋溢,神采飞扬,深受学生欢迎。2019年在储层声学会议上被授予“元勋贡献奖”。 吴如山教授(右二),加州大学(SC)计算地震学研究组创建人。 朱正亚博士(右三),麻省理工学院实验声学家,在实内最早观测到岩石中声波引起的电磁场。 2000年春胡恒山在MIT地球资源实验室访问期间与Nafi Toksoz教授合影 名称 |