袁承勋
姓名 | 袁承勋 |
教师编号 | 91606 |
性别 | 袁承勋 |
学校 | 哈尔滨工业大学 |
部门 | 物理学院 |
学位 | 袁承勋 |
学历 | 袁承勋 |
职称 | 教授 |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
基本信息 科学研究 教育教学 论文专著 新建主栏目 基本信息 名称 袁承勋:理学博士、哈尔滨工业大学物理学院,教授,博士生导师,应用物理系主任。中国电子学会高级会员,中国仿真学会环境建模仿真专业委员会委员,黑龙江省物理学会副理事长、秘书长,中国力学学会会员,中国物理学会会员。主要研究方向为:等离子体物理与应用技术、电波传播、等离子体光子晶体等。主持国家重点研发计划项目课题、国家自然科学基金面上项目、黑龙江省重点研发计划等国家级及省部级项目20余项;发表学术论文200余篇,其中SCI检索论文150余篇,出版英文专著1部,参编教材2部,申请国家发明专利20余项,授权10余项。在国外学术会议作大会报告、邀请报告、口头报告等上百次。 工作经历 名称 时间 工作经历 2019.12—今 哈尔滨工业大学 物理学院 教授 2014.12—2019.12 哈尔滨工业大学 物理系(学院) 副教授 2011.07—2014.12 哈尔滨工业大学,物理系 讲师 教育经历 标题 本科 起讫时间 2000.09-2004.06 所学专业 应用物理学 学习机构 哈尔滨工业大学 学历 理学学士 简单介绍 标题 研究生(硕博连读) 起讫时间 2004.06-2010.12 所学专业 物理学 学习机构 哈尔滨工业大学 学历 博士 简单介绍 主要任职 名称 l “Plasma Sources Sci. Technol.”,“J. Phys. D-Appl. Phys.”,“Phys. Plasmas”,“Plasma Sci. Technol. ”,“IEEE Trans. Plasma Sci.”等一系列国际杂志的审稿人等一系列国际杂志的审稿人; l 中国自然科学基金、美国国家科学基金、波兰国家科学基金(NCN)等基金同行函审专家; l 国际会议ICPAT 2019 in Yalta,PIERS 2019 in Rome, ICPAT 2019 in Abu Dhabi, ISAPE2018 in Hangzhou分会主席; l 第14届全国电波传播学术讨论年会,分会主持,大会程序委员会委员; l 第3届全国高电压与放电等离子体学术会议分会主席,组委会委员; l 第20届全国等离子体科学技术会议共同执行主席; l 第2届中俄科技论坛组委会委员,分会主席; l 《中国电子学会会员通讯》编委; l Review Editor on the Editorial Board of Plasma Physics (specialty section of Frontiers in Physics and Frontiers in Astronomy and Space Sciences); l 中国科学院合肥物质科学研究院学位论文评审专家; l 教育部学位中心学位论文评审专家; l 中国博士后科学基金评审专家; l 黑龙江省青联13届委员会委员; l 哈尔滨市青联15届委员会委员; l 民盟哈尔滨工业大学委员会副主任委员。 科研项目 项目名称 重力场下弱电离尘埃等离子体电磁波传输特性研究 项目来源 国家自然科学基金面上项目 开始时间 2018.1 结束时间 2021.12 项目经费 64万 担任角色 负责 项目类别 纵向项目 项目状态 完成 简单介绍 项目名称 基于等离子体动理学理论的气体放电尘埃等离子体电磁特性理论研究及实验验证 项目来源 国家自然科学基金面上项目 开始时间 2022-01-01 结束时间 2026-12.31 项目经费 64万 担任角色 负责 项目类别 纵向项目 项目状态 进行中 简单介绍 研究领域 名称 主要研究方向: 复杂等离子体物理及应用技术研究; 等离子体的电磁特性研究; 等离子体产生及诊断; 等离子体光子晶体。 研究平台-1:辐射与材料研究中心 名称 哈尔滨工业大学辐射与材料研究中心成立于1991年,由国家科学进步二等奖获得者秦汝虎教授组建,是哈尔滨工业大学最早获批的研究中心之一。中心2015年与圣彼得堡国立大学合作成立了“中俄等离子体物理应用技术联合研究中心”,2020年获批“黑龙江省等离子体物理与应用技术重点实验室”,2023年获批“黑龙江省等离子体物理与应用技术创新研究中心”。现团队以周忠祥教授为负责人,团队包括5位教授、2位外聘教授,一位兼职博导,4位副教授、3位讲师,其中博士生导师8名,硕士生导师3名。研究生人数为50人,包括博士生28人,硕士生22人。 负责人: 周忠祥 教授,博士生导师 个人主页 http://homepage.hit.edu.cn/zhouzongxiang 主要成员 王晓鸥博士、教授, 博士生导师 孟庆鑫博士、教授, 博士生导师 宫德维博士、副教授,硕士生导师 袁承勋博士、教授, 博士生导师 申艳青博士、副教授,博士生导师 李 均博士、教授, 博士生导师 王 莹博士、副教授, 硕士生导师 姚静锋博士、助理教授 吕兴宝博士、助理教授 周 晨博士、助理教授 研究平台-2:黑龙江省等离子体物理与应用技术重点实验室 名称 黑龙江省等离子体物理与应用技术重点实验室依附于哈工大物理学院等离子体物理学科,集中了一校三区等离子体方向优秀人才,坚持原创性基础研究和应用技术研究并重的指导思想,形成了空间等离子体物理、基础等离子体物理、复杂等离子体物理及低温等离子物理应用技术等四个重要研究方向,体现了哈工大等离子体物理学科上的优势和特色。等离子体物理与应用技术实验室多年来致力于空间等离子体、基础等离子体及等离子体在工业、材料处理等方面的应用研究。促进了等离子体在材料处理、环境处理、生物医学等领域应用的发展。 实验室主任为周忠祥教授,现有全职人员25人。所有人员全部具有博士学位,其中教授12人,博士生导师12人。在研究人员中有多人入选国家及省级人才计划。自2015年以来本实验室共培养博士毕业生40名,硕士毕业生120人。目前在读博士研究生42人,硕士生56人。 讲授课程 名称 本科生课程: 大学物理 等离子体物理 研究生课程: 电磁波与等离子体相互作用 招生信息 名称 每年招收物理学类硕士4-6名,博士3-5名; 出版物 出版物名称 Introduction to the Kinetics of Glow Discharges 作者 Chengxun Yuan, Anatoly A Kudryavtsev,Vladimir I Demidov 出版时间 2018.8 出版社 IOP 简单介绍 出版物名称 大学物理 作者 张宇,赵远,孟庆鑫,张伶莉, 袁承勋,吴琦,刘丽萍,黄义春,李娜,任常愚等 出版时间 2015 出版社 高等教育出版社 简单介绍 论文期刊 名称 Scopus 作者情况:https://www.scopus.com/authid/detail.uri?authorId=36451487300 Orcid文章情况:http://orcid.org/0000-0002-2308-6703 Book: 1. Chengxun Yuan, Anatoly A Kudryavtsev, Vladimir I Demidov. Introduction to the kinetics of glow discharges. A Morgan & Claypool publication as part of IOP Concise Physics. 2018(专著) Journal Article: 2024 1. Chengxun Yuan, Chen Zhou, Mikhail V Demidov, Toma? Gyergyek, Jernej Kova?i?, Mark E Koepke, Iya P Kurlyandskaya, Vladimir I Demidov, Stefan Costea and Zhongxiang Zhou. Correlation between fluctuating electron temperature and fluctuating space-potential challenges the probe determination of turbulent electric field spectrum. IEEE Trans. Plasma Sci. (Accepted) 2. Shixin Zhao, Xingbao Lyu, Ying Wang, Chengxun Yuan, Jian Wu, Aleksandr Astafiev, Lin Miao, Anatoly Kudryavtsev, Aleksandr Chirtsov, Gennadii Shabanov, Zhongxiang Zhou. Visualization of a toroidal vortex structure forming in the laboratory ball lightning of the Gatchina discharge. IEEE Trans. Plasma Sci. (Accepted) 3. Jingfeng Yao, Mohamed M. Mandour, Anatoly A. Kudryavtsev and Chengxun Yuan. EMF Generation in Photoplasma Created by Concentrated Solar Radiation at Different Na Pressures. IEEE Trans. Plasma Sci. (Accepted) 4. Chen Chen, K. M. Rabadanov, N. A. Ashurbekov, Chengxun Yuan, A. M. Shakhrudinov. Transverse Magnetic Field Effects on the High-VoltagePulsed Discharge Plasma in Helium. Journal of Plasma Physics. 2024, 90(1), 905900115. 5. Shixin Zhao, Xingbao Lyu, Aleksandr Astafiev, Chengxun Yuan, Lin Miao, Jingfeng Yao, Ying Wang, Anatoly Kudryavtsev, Aleksandr Chirtsov, Gennadii Shabanov, Zhongxiang Zhou. Microwave diagnostics of pulsed atmospheric discharge with electrolytic electrode and long‐lived luminous formation in its afterglow. High Voltage, 2023,9(1):127-136 6. Yong Li, Hui Li, Jian Wu, Xingbao Lyu, Chengxun Yuan, Zhongxiang Zhou. Characterization of mid-latitude ultra-low frequency ionospheric currents excited by artificial modulation. IEEE Trans. Plasma Sci.(Accepted) 7. Yiqun Ma, Xingbao Lyu*, Chengxun Yuan*, Svetlana Avtaeva, Anatoly Kudryavtsev, Zhongxiang Zhou. Impact of the electrode structure on post-cathode plasma in the grid electrode DC glow discharge. Contrib. Plasma Phys. 10.1002/ctpp.202300169 8. Jingfeng Yao, Vasily Kozhevnikov, Vladislav Igumnov, Zijia Chu, Chengxun Yuan and Zhongxiang Zhou. The kinetic theory of cathode plasma expansion in a spatially non-uniform geometric configuration of a vacuum diode. Plasma Sources Sci. Technol.(Accepted) 2023 9. Chen Zhou, Chengxun Yuan, Anatoly Kudryavtsev, T. Yasar Katircioglu, Ismail Rafatov, Jingfeng Yao*. Self-consistent treatment of gas heating in modeling of a coaxial DBD in atmospheric pressure CO2, Plasma Sources Sci. Technol., 2023,32(01), 015010 10. Jianfei Li, Chen Zhou, Jingfeng Yao, Chengxun Yuan*, Ying Wang, Zhongxiang Zhou, Jingwen Zhang And Anatoly A Kudryavtsev. Valley-dependent topological edge states in plasma photonic crystals, Plasma Sci. Technol., 2023, 25(3): 035001 11. Zhian Hao, Jianfei Li, Bin Xu, Jingfeng Yao*, Chengxun Yuan*, Ying Wang, Zhongxiang Zhou and Xiaoou Wang, A composite wave-absorbing structure combining thin plasma and metasurface Plasma Sci. Technol., 2023, 25(4): 045504 12. Jianfei Li, Jingfeng Yao, Chengxun Yuan, Ying Wang, Zhongxiang Zhou, Jingwen Zhang and Anatoly A. Kudryavtsev, Gas Discharge Properties of Inverse-brush-electrodes Driven by Alternating Current. IEEE Trans. Plasma Sci., 2023, 51(3):903-912 13. Shixin Zhao, Xingbao Lyu*, Yangguo Liu, Chengxun Yuan*, Svetlana, Avtaeva, Anatoly Kudryavtsev, Jingfeng Yao, Ying Wang, Xiaoxue Li And Zhongxiang Zhou, Spectral characteristics of DC short glow discharge plasma with grid electrodes, IEEE Access, 2023, 11: 19339~19346 14. Ruihuan Tian, Yonggan Liang, Shuji Hao, Jie Feng, Xiaonan Jiang, Hui Li, Chengxun Yuan and Jian Wu. Simulation of DC glow discharge plasma with radially free moving dust particles. Plasma Sci. Technol. 2023, 25(9):095404 15. Jian fei Li, YingWang, Zhongxiang Zhou, Jingfeng Yao, Jianlong Liu, ZhihaoLan, ChengxunYuan*. Experimental observations of communication in blackout, topological waveguiding and Dirac zero-index property in plasma sheath. Nanophotonics. 2023, 12(10): 1847-1856 16. Zijia Chu, Jingfeng Yao*, Chengxun Yuan*, Zhongxiang Zhou, Anatoly Kudryavtsev, Ying Wang and Xiaoou Wang. Numerical simulation of the hysteresis of the transition from the stationary to oscillatory regime in the low-pressure DC glow discharge. Physics of Plasmas, 2023, 30(4): 042304 17. Jingfeng Yao, Chai Yan, Chengxun Yuan,*, Eugene A. Bogdanov*, Kurban Rabadanov, Zhijia Chu, Anatoly Kudryavtsev. Specificity of the electron energy distribution function in a low-pressure nitrogen plasma. Plasma Sources Sci. Technol., 2023, 32: 055006 18. Xin Ye, Yongge Wang, Jingfeng Yao, Ying Wang, Chengxun Yuan*. Structure-independent flat bands induced by discontinuity plasma-air interface in photonic crystals. Phys. Rev. B, 2023, 107: 195301 19. Jianfei Li,Jingfeng Yao,Ying Wang,Zhongxiang Zhou,Anatoly A Kudryavtsev,Zhihao Lan,Chengxun Yuan. Observation of nontrivial Zak phase induced topological states in glow discharge plasma,APL Photonics. 2023(8): 066102 20. Hailu Wang, Jingfeng Yao, Chuan Fang, Chengxun Yuan, He-Ping Li. The simulation of terahertz waves transmission in the arc plasma. Frontiers In Physics, 2023, 11: 1182972 21. Jingfeng Yao, Yan Chai, Chengxun Yuan*, Eugene A. Bogdanov*, Anatoly Kudryavtsev, Zhijia Chu, Ying Wang and Zhongxiang Zhou, Influence of the ambipolar field on the formation of electron phase flows in the positive column of a glow discharge in a nitrogen-like gas. Plasma Sources Sci. Technol. 2023, 32 095001 22. Yong Li, Hui Li, Jian Wu, Xingbao Lyu, Chengxun Yuan, Ce Li, Zhongxiang Zhou. Effect of wave polarization on ionospheric ohmic heating and optimal polarization. Physics of Plasmas, 2023, 30(10): 102902 23. Zijia Chu, Jingfeng Yao,? Hailu Wang, Chengxun Yuan,? Zhongxiang Zhou, Anatoly Kudryavtsev, Ying Wang, and Xiaoou Wang. Experimental investigation of the period-adding bifurcation route to chaos in plasma. Phys. Rev. E, 2023, 108: 055210 24. Anna A. Rybkina,* , Alevtina A. Gogina, Artem V. Tarasov, Ye Xin , Vladimir Yu. Voroshnin, Dmitrii A. Pudikov, Ilya I. Klimovskikh, Anatoly E. Petukhov, Kirill A. Bokai, Chengxun Yuan, Zhongxiang Zhou,*, Alexander M. Shikin and Artem G. Rybkin *,Origin of Giant Rashba Effect in Graphene on Pt/SiC, Symmetry,2023, 15, 2052 25. Yong Li, Hui Li, Jian Wu, Xingbao Lv, Chengxun Yuan, Ce Li, Zhongxiang Zhou, F-region drift current and magnetic perturbation distribution by the X-wave heating ionosphere, Annales Geophysicae, 2023, 41(2): 541-549 2022 26. Weili Fan, Xiaohan Hou, Miao Tian, Kuangya Gao, Yafeng He, Yaxian Yang , Qian Liu, Jingfeng Yao, Fucheng Liu *, Chengxun Yuan *. Tunable triangular and honeycomb plasma structures in dielectric barrier discharge with mesh-liquid electrodes. Plasma Sci. Technol., 2021, 24, (1): 015402(Highlights,封面文章) 27. Xingbao Lyu, Chengxun Yuan*, Svetlana Avtaeva, Anatoly Kudryavtsev, Jingfeng Yao, Yangguo Liu, Zhongxiang Zhou, Xiaoou Wang. Attenuation of Microwave Radiation by Post-Anode Plasma in a Composite Grid Electrode Structure. IEEE Access, 2022, 10: 7675 - 7683 28. Zhe Ding, Jingfeng Yao, K. M. Rabadanov*, E. A. Bogdanov, A. A.Kudryavtsev N. A. Ashurbekov, Shubo Li, Chengxun Yuan*, G. Sh. Shakhsinov and Zhongxiang Zhou. Specificity of the EEDF formation in a dusty plasma with nonmonotonic profiles of charged particles and reversal ambipolar field. Chinese J. Phys., 2022,77: 36-44 29. Shubo Li, Chengxun Yuan, Iya P. Kurlyandskaya, V. I. Demidov, M. E.Koepke, Jingfeng Yao and Zhongxiang Zhou*. Measurements of fluctuating electron temperature and space potential in a magnetized plasma with a single magnetically insulated baffled probe (MIBP). Plasma Sources Sci. Technol., 2022. 31:037001 30. Xingbao Lyu, Chengxun Yuan*, Svetlana Avtaeva, Anatoly Kudryavtsev, Jingfeng Yao, Yangguo Liu, Zhongxiang Zhou, and Xiao-Ou Wang, Spectral Characteristics of a Short Glow Discharge with a Grid Anode. AIP Advances. 2022, 12: 035202 31. Jianfei Li, Jingfeng Yao*, Chengxun Yuan*, Ying Wang, Zhongxiang Zhou and Jingwen Zhang. Tunable transmission near Dirac-like point in the designed plasma photonic crystal. Phys. Plasmas, 2022, 29: 033505 32. Shubo Li, Zhe Ding, K. M. Rabadanov*, A. A. Kudryavtsev, N. A. Ashurbekov, Jingfeng Yao*, Chengxun Yuan and Zhongxiang Zhou. Specificities of the nonlocal EDF formation in a dusty plasma with the different spatial distribution of the microparticle density. IEEE Trans. Plasma Sci., 2022, 50(6): 1653-1660. 33. Chengxun Yuan, Yan Chai, Evgeny A Bogdanov and Anatoliy Kudryavtsev. On the possibility of creating absolute negative conductivity in a local stationary plasma with an inverse EDF. IEEE Trans. Plasma Sci., 2022, 50(6): 1695-1699. 34. Chengxun Yuan, Yan Chai, Evgeny A Bogdanov and Anatoliy Kudryavtsev. Influence of electron-electron collisions on the formation of inverse electron distribution function and absolute negative conductivity in nonlocal plasma of a DC glow discharge. IEEE Trans. Plasma Sci., 2022, 50(6):1689-1694. 35. Hailu Wang, Jingfeng Yao, Alexandr Astafiev, Anatoly Kudryavtsev, Chengxun Yuan, Zhongxiang Zhou, Heping Li*. Microwave Diagnostics of Cold Atmospheric Pressure Plasma Jets Based on the Radiation Pattern Measurements. IEEE Trans. Plasma Sci., 2022, 50(6): 1669-1674. 36. Xin Ye, Yongge Wang, Jingfeng Yao*, Chengxun Yuan, Zhongxiang Zhou*,, Alexandr Astafiev, Anatoly Kudryavtsev. Radiation pattern in a tunable plasma window antenna, Journal of Physics D: Applied Physics. 2022, 55: 345201. 37. Xin Ye, Yongge Wang, Jingfeng Yao*, Chengxun Yuan*, Zhongxiang Zhou, Alexandr Astafiev, Anatoly Kudryavtsev. Plasma-enabled microwave modulation for continuous beam scanning. Journal of Physics D: Applied Physics. 2022, 55: 435202 38. Chen Zhou, Jingfeng Yao, Almaz I Saifutdinov*, Anatoly A Kudryavtsev, Chengxun Yuan*, Guowei Ma, Zhiyu Dou, Jingjie Cao, Mingxi Ma and Zhongxiang Zhou, Determination of organic impurities by plasma electron spectroscopy in non-local plasma at intermediate and high pressures. Plasma Sources Sci. Technol., 2022, 31: 107001 39. Chen Zhou, Jingfeng Yao, Lezhi Zhan, Chengxun Yuan*, Anatoly A Kudryavtsev, Almaz I Saifutdinov, Ying Wang, Zhi Yu, Zhongxiang Zhou, Using Collisional Electron Spectroscopy to Detect Gas Impurities in an Open Environment: CH4–containing Mixtures. Molecules, 2022. 27, 6066 40. Yong Li, Hui Li, E. A. Bogdanov, Anatoly A Kudryavtsev, Chengxun Yuan, Jingfeng Yao, Zhongxiang Zhou and Jian Wu. Heating rate of thermal electrons by the fast part of EDF in the ionosphere, Phys. Plasmas. 2022,29(12):123508 41. Zijia Chu, Jingfeng Yao, Chengxun Yuan, Zhongxiang Zhou, Anatoly Kudryavtsev, Xiaoou Wang, and Ying Wang. Numerical simulation of the bifurcation-remerging process and intermittency in an undriven direct current glow discharge. Phys. Rev. E 2022.106:065207 42. Chengxun Yuan, Zhijian Lu, V. L. Bychkov, D. V. Bychkov, M. G. Golubkov,* T. A. Maslov, I. D. Rodionov, I. P. Rodionova, I. G. Stepanov, S. Y. Umanskii, and G. V. Golubkov. Distribution of Positive and Negative Ion Concentrations in the Troposphere. Russian Journal of Physical Chemistry B, 2022.16(5):955-964 2021 43. Chen Zhou, Yueying Li, Zhi Yu, Jingfeng Yao, Chengxun Yuan* and Zhongxiang Zhou*, Diagnostics of a micro-hollow cathode discharge at atmospheric pressure, Plasma Sci. Technol., 2021, 23:064001 44. Jinming Li, Dmitrii V. Bogdanov, Anatoly A. Kudryavtsev, Evgeniy A. Bogdanov, Chengxun Yuan*, Zhongxiang Zhou and Xiaoou Wang. Influence of Discharge Current, Pressure, and Magnetic Field on the Spatial Distribution of Particles and Fluxes in the Dusty Plasma of the Positive Column of DC Glow Discharge, IEEE Trans. Plasma Sci., 2021, 49 (2): 878 - 885 45. Zhe Ding, Chengxun Yuan*, Zhongxiang Zhou, Jingfeng Yao, Shubo Li, and Anatoly A. Kudryavtsev. Ambipolar trap for dust particles in a v-shaped homogeneous positive column of glow discharge at low and medium pressures. IEEE Trans. Plasma Sci., 2021, 49(3): 997-1000 46. Jinming Li, Aleksandr M. Astafiev, Anatoly A. Kudryavtsev, Chengxun Yuan*, Zhongxiang Zhou and Xiaoou Wang. The possibility of measuring electron density of plasma at atmospheric pressure by a microwave cavity resonance spectroscopy, IEEE Trans. Plasma Sci., 2021, 49(3): 1001-1008 47. Shubo Li, K. M. Rabadanov*, E. A. Bogdanov, A. A. Kudryavtsev, N. A. Ashurbekov, Chengxun Yuan* and Zhongxiang Zhou. Features of the EEDF formation in the dusty plasma of the positive column of a glow discharge. Plasma Sources Sci. Technol., 2021, 30: 047001 48. Hui Li, Chengxun Yuan, Anatoly Kudryavtsev, Aleksandr Astafiev, Eugeny Bogdanov, T. Yasar Katircioglu, and Ismail Rafatov. Analysis of parameters of coaxial dielectric barrier discharges in argon flow at atmospheric pressure. J. Appl. Phys., 2021, 129: 153305 49. Zhe Ding, Qiuyu Guan, Chengxun Yuan*, Zhongxiang Zhou, and Zhenshen Qu,A method of electron density of positive column diagnosis-Combining machine learning and Langmuir probe. AIP Advances, 2021,11(4): 045028 50. Zhe Ding, Jingfeng Yao, Ying Wang, Chengxun Yuan*, Zhongxiang Zhou, Anatoly A Kudryavtsev, Ruilin Gao, Jieshu Jia. Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column, Plasma Sci. Technol., 2021, 23: 095403 51. Chengxun Yuan, I P Kurlyandskaya, V I Demidov, M Gryaznevich,M E Koepke and Y Raitses. Magnetically insulated baffled probe (MIBP) for low-temperature and fusion-boundary plasma studies. Plasma Phys. Controlled Fusion., 2021, 63: 093001(Topical Review) 52. Yan Chai, Jingfeng Yao, E. A. Bogdanov*, A. A.Kudryavtsev, Chengxun Yuan and Zhongxiang Zhou, Formation of inverse EDF in glow discharges with an inhomogeneous electric field, Plasma Sources Sci. Technol., 2021, 30: 095006 (3,3) 53. Xingbao Lyu, Chengxun Yuan, S. Avtaeyya*, A. Kudryavtseva, Jingfeng Yao, Zhongxiang Zhou and Xiaoou Wang. A large-area dc grid anode Glow Discharge in Helium, Plasma Phys. Rep., 2021, 47(4): 369-376 54. Shixin Zhao, Chengxun Yuan, A. A. Kudryavtsev, O. M. Zherebtsovc, and G. D. Shabanov, A Study of the Dynamics of Formation of Plasmoids in the Gatchina Discharge,Technical Physics, 2021, 66(7): 1081-1094 55. Chen Zhou, Jingfeng Yao, Almaz I. Saifutdinov*, Anatoly A. Kudryavtsev, Chengxun Yuan*, Zhongxiang Zhou, Use of plasma electron spectroscopy method to detect hydrocarbons, alcohols, and ammonia in nonlocal plasma of short glow discharge, Plasma Sources Sci. Technol., 2021, 30: 117001 (未统计) (3,3) 56. Hui Li, Chengxun Yuan, Anatoly A. Kudryavtsev, Yasar Katircioglu, Ismail Rafatov. Parametric study of coaxial dielectric barrier discharge in atmospheric pressure argon, Phys. Plasmas, 2021, 28: 113505 57. Hui Li, Jian Wu, V. L. Bychkov, V. A. Chernikov, A. Mukhamadiev, T. O. Mikhailovskaya, and Chengxun Yuan, Columns Appearing at Corona Discharge over Fluids. Russian Journal of Physical Chemistry B, 2021, 15(5): 848-853 2020 58. Xingbao Lyu, Chengxun Yuan*, Svetlana Avtaeva, Anatoly Kudryavtsev, Jingfeng Yao, Zhongxiang Zhou, and Xiaoou Wang. Paschen curves and current–voltage characteristics of large-area short glow discharge with different electrode structures. Phys. Plasmas, 2020, 27: 123509 59. Jingfeng Yao, Chengxun Yuan, S. Eliseev*, A. Kudryavtsev and Zhongxiang Zhou*, Longitudinal structure and plasma parameters of an entire DC glow discharge as obtained using a 1D fluid-based model with non-local ionization. Plasma Sources Sci. Technol. 2020, 29: 075033 (5,5) 60. Shubo Li, Chengxun Yuan*, Jingfeng Yao, I P Kurlyandskaya, M E Koepke, V I Demidov, A A Kudryavtsev and Zhongxiang Zhou*. Evidence of effective local control of a plasma’s nonlocal electron distribution function. Plasma Sources Sci. Technol., 2020, 29(7): 077001 61. Chengxun Yuan, Cihan Yesil, Jingfeng Yao, Zhongxiang Zhou and Ismail Rafatov*, Transition from periodic to chaotic oscillations in a planar gas discharge-semiconductor system, Plasma Sources Sci. Technol., 2020, 29: 065009 62. Chengxun Yuan , Jingfeng Yao , V. I. Demidov , I. P. Kurlyandskaya , I. I. Konovalova, A. A. Kudryavtsev , and Zhongxiang Zhou. Measurement of the densities of plasma and ambient gas particles using a short direct current discharge. Phys. Plasmas. 2020, 27: 053508 63. Yonggan Liang, Jian Wu, Hui Li, Ruihuan Tian, Chengxun Yuan*, Ying Wang, Zhongxiang Zhou And Hao Tian, Theoretical research on the transport and ionization rate coefficients in glow discharge dusty plasma, Plasma Sci. Technol. 2020, 22(3): 034003 (5,5) 64. Jingfeng Yao, Chengxun Yuan*, Zhi Yu, Zhongxiang Zhou* and Anatoly Kudryavtsev, Measurements of plasma parameters in a hollow electrode AC glow discharge in helium, Plasma Sci. Technol., 2020, 22(3): 034006 (7,7) 65. V. V. Gorin, A. A. Kudryavtsev, Jingfeng Yao, Chengxun Yuan, and Zhongxiang Zhou, Boundary conditions for drift-diffusion equations in gas-discharge plasmas, Phys. Plasmas, 2020, 27: 013505 66. Jinming Li, I.K. Getmanov, A. A. Kudryavtsev, Chengxun Yuan, Zhongxiang Zhou, Conductivity and Permittivity in Plasma with nonequilibrium Electron Distribution Function, IEEE Trans. Plasma Sci., 2020, 48(2): 388-393 67. Shubo Li, Dmitrii V. Bogdanov, Anatoly A. Kudryavtsev, Jingfeng Yao, Chengxun Yuan, Zhongxiang Zhou, Influence of the spatial distribution of the dust particles density on the radial profiles formation of particles and fluxes in a dusty plasma of DC glow discharge, IEEE Trans. Plasma Sci., 2020, 48(2): 375-387 68. Jinming Li, A. M. Astafiev, A. A. Kudryavtsev, Chengxun Yuan, Jiengfeng Yao, Zhongxiang Zhou and Xiaoou Wang, Monopole antenna with reconfigurable quarter wavelength plasma reflector, IEEE Trans. Plasma Sci., 2020, 48(2):364-368 69. Jingfeng Yao, Zhi Yu, Chengxun Yuan*, Zhongxiang Zhou, Xiaoou Wang, A. A. Kudryavtsev. The influence of plasma distribution on microwave reflection in a plasma-metal model, IEEE Trans. Plasma Sci., 2020, 48(2): 359 - 363 70. Chengxun Yuan, Jingfeng Yao, E. A. Bogdanov,* A. A. Kudryavtsev, and Zhongxiang Zhou?, Formation of inverse electron distribution function and absolute negative conductivity in nonlocal plasma of a dc glow discharge, Phys. Rev. E, 2020, 101: 031202(R) (11,11) 2019 71. Ruihuan Tian, Jian Wu, Jinxiu Ma, Yonggan Liang, Hui Li Chengxun Yuan*, Yongyuan Jiang, and Zhongxiang Zhou, The research on small-scale structures of ice particle density and electron density in the mesopause region, Journal Annales Geophysicae, 2019, 37: 1079-1094 72. Chengxun Yuan, E A Bogdanov, A A Kudryavtsev, K M Rabadanov and Zhongxiang Zhou. Influence of electron-electron collisions on the formation of a non-local EDF, Plasma Sources Sci. Technol., 2019, 28:015001 (7,7) 73. Jinming Li , Ying Wang, Junjie Wei, Chengxun Yuan*, Zhongxiang Zhou, Xiaoou Wang, and A. A. Kudryavtsev. Effects of Non-Maxwellian Electron Distribution Function to the Propagation Coefficients of Electromagnetic Waves in Plasma. IEEE Trans. Plasma Sci., 2019, 47(1):100-103 74. Hengyang Xia, Ying Wang, Chengxun Yuan*, Zhongxiang Zhou, A. A. Kudryavtsev, Xiaoou Wang, Bin Xu, Kun Xue, Hui Li, and Jian Wu. Measurement of microwave propagation in weakly ionized dusty plasma. IEEE Trans. Plasma Sci., 2019, 47(1):109-112 75. Chengxun Yuan, Jingfeng Yao, E. A. Bogdanov, A. A. Kudryavtsev, K. M. Rabadanov, and Zhongxiang Zhou, Calculation of nonlocal EDF using a onedimensional Boltzmann equation solver. Phys. Plasmas, 2019, 26: 023509 76. Yonggan Liang, Jian Wu, Hui Li, Ruihuan Tian, Chengxun Yuan*, Ying Wang, A. A. Kudryavtsev, Zhongxiang Zhou, and Hao Tian. A kinetic model for investigating the dielectric properties of rocket exhaust dusty plasmas. Phys. Plasmas, 2019, 26: 043704 77. Chengxun Yuan, Zhongxiang Zhou , Jingfeng Yao , E A Bogdanov , A A Kudryavtsev and K M Rabadanov, Influence of metastable atoms on the formation of nonlocal EDF, electron reaction rates, and transport coefficients in argon plasma. Plasma Sources Sci. Technol., 2019, 28: 035017 (7,7) 78. Jingfeng Yao, Zhi Yu, Chengxun Yuan*, Junjie Wei, Ying Wang, Zhongxiang Zhou, Xiaoou Wang, and A. A. Kudryavtsev, Analysis and optimization of microwave reflections in a plasma-metal model. J. Appl. Phys. 2019, 125(16): 163306 79. Jingfeng Yao, Chengxun Yuan*, Hui Li, Jian Wu, Ying Wang, Anatoly A. Kudryavtsev, Vladimir I. Demidov and Zhongxiang Zhou* , 1D photonic crystal filled with low-temperature plasma for controlling broadband microwave transmission. AIP Advances, 2019, 9: 065302 (Featured Article文章的重要性和创新性获得杂志编委会和评审专家的高度评价,被选为本期的封面文章及亮点文章 (14,14) 80. Chengxun Yuan, A A Kudryavtsev , A I Saifutdinov, S S Sysoev, Jingfeng Yao and Zhongxian Zhou. Diagnostics of large volume coaxial gridded hollow cathode DC discharge. Plasma Sources Sci. Technol., 2019, 28 (06): 067001 (6,6) 81. Jingfeng Yao, Chengxun Yuan*, Zhi Yu, I. P. Kurlyandskaya, V. I. Demidov, A. A. Kudryavtsev, T. V. Rudakova, and Zhongxiang Zhou, Nonlocal control of plasma conductivity, Phys. Plasmas, 2019, 26: 073301 82. Ruihuan Tian, Chengxun Yuan, Dmitrii V. Bogdanov, Evgeniy A. Bogdanov and Zhongxiang Zhou, Influence of dust particles on spatial distributions of particles and fluxes in positive column of glow discharge, Plasma Sci. Technol., 2019, 21: 115404 (7,7) 83. Chengxun Yuan, Jingfeng Yao, Dmitrii V. Bogdanov, Evgeniy A. Bogdanov, Anatoly A. Kudryavtsev, Zhongxiang Zhou. Formation of nonmonotonic profiles of densities and fluxes of charged particles and ambipolar field reversal in argon dusty plasmas, Plasma Sources Sci. Technol., 2019, 28: 095020 (9,9) 84. Zhe Ding, A. A. Kudryavtsev, A.I. Saifutdinov, S.S. Sysoev, Chengxun Yuan, Shubo Li, Jiengfeng Yao, Zhongxiang Zhou. The influence of the ambipolar field on the levitation conditions of dust particles in the positive column of the glow discharge with a change the spatial orientation of the discharge tube. IEEE Trans. Plasma Sci., 2019, 47(9): 4391-4394 85. Jianyi Chen, Chengxun Yuan, Xiudong Sun and Lei Huo, Transmissivity of electromagnetic wave propagating in the magnetized plasma sheath using variational method. Plasma Sci. Technol., 2019, 21: 125001 86. Zhi Yu, Jingfeng Yao, Chengxun Yuan*, Zhongxiang Zhou, Xiaoou Wang and Sergey Sysoev. The smooth effect of fast electron detection in the positive column in DC glow discharge. AIP Advances, 2019, 9: 095033 87. Ying Wang*, Yonggan Liang, Jingfeng Yao, Chengxun Yuan*, ZhongxiangZhou, Nonlinear propagation characteristics and ring structure of a Gaussian beam in collisionless plasmas with high order paraxial ray theory, Optik, 2019, 179: 744-749 2018 88. Yonggan Liang, Chengxun Yuan*, Hui Li, Ruihuan Tian, Jian Wu, A. A. Kudryavtsev, Zhongxiang Zhou and Hao Tian, Influence of dust particles on DC glow discharge plasma, Phys. plasmas, 2018, 25: 023701 89. Ruihuan Tian, Chengxun Yuan*, Hui Li, Yonggan Liang, Jian Wu, Anatoly A. Kudryavtsev, Gennady V. Kirsanov, Zhongxiang Zhou, Yongyuan Jiang. Influence of dust particles on positive column of DC glow discharge, J. Appl. Phys., 2018, 123: 103301 (14,14) 90. Chengxun Yuan, Ruihuan Tian, Stepan Eliseev, Vladimir Bekasov, E. A. Bogdanov, Anatoly A. Kudryavtsev, Zhongxiang Zhou. Numerical simulation and analysis of electromagnetic-wave absorption of a plasma slab created by a direct-current discharge with gridded anode. J. Appl. Phys., 2018, 123: 113303 91. Chengxun Yuan, E. A. Bogdanov, A. A. Kudryavtsev and Zhongxiang Zhou. Vortex electron flux and EDF nonlocality of moderate and high-pressure gas discharge plasmas. Plasma Sources Sci. Technol., 2018, 27: 045007 92. Yonggan Liang, Ying Wang, Hui Li, Ruihuan Tian, Chengxun Yuan*, A. A. Kudryavtsev, K. M. Rabadanov, Jian Wu, Zhongxiang Zhou, and Hao Tian, The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma. Phys. Plasmas, 2018, 25: 053702 93. Chengxun Yuan, A. A. Kudryavtsev, A. I. Saifutdinov, S. S. Sysoev, M. S. Stefanova, P. M. Pramatarov, and Zhongxiang Zhou. Determining the spectrum of penning electrons by current to a wall probe in nonlocal negative glow plasma. Phys. Plasmas, 2018, 25: 104501 (7) 94. Ying Wang*, Chengxun Yuan*, Yonggan Liang, Jingfeng Yao, Zhongxiang Zhou, Ponderomotive force induced nonlinear interaction between powerful terahertz waves and plasmas. Optik, 2018, 175: 250-255 95. Ying Wang*, Yonggan Liang, Jingfeng Yao, Chengxun Yuan*, and Zhongxiang Zhou, Nonlinear propagation characters of THz multi-Gaussian beams in collisionless plasmas, JOSA B, 2018, 35(12):3088-3093 2017 96. Chengxun Yuan, E. A. Bogdanov, A. A. Kudryavtsev, K. M. Rabadanov & Zhongxiang Zhou, Ambipolar field role in formation of electron distribution function in gas discharge plasma. Scientific Reports, 2017, 7: 14613. (12,12) 97. Chengxun Yuan, Jingfeng Yao, S. I. Eliseev, E. A. Bogdanov, A. A. Kudryavtsev, and Zhongxiang Zhou, On self-sustainment of DC discharges with gridded anode. J. Appl. Phys., 2017, 122: 143304. (5,5) 98. Chengxun Yuan*, Ruihuan Tian, Stepan I. Eliseev , Vladimir I. Demidov, Anatoly A. Kudryavtsev , Qi Wang, and Zhongxiang Zhou, Local magnetic control in a large-scale low-pressure nonlocal plasma source. IEEE Trans. on Plasma Sci., 2017,45(12):3114-3117 99. Chengxun Yuan*, A. A. Kudryavtsev , A. I. Saifutdinov, S. S. Sysoev, Ruihuan Tian, Jingfeng Yao, and Zhongxiang Zhou, Probe diagnostics of plasma parameters in a large-volume glow discharge with coaxial gridded hollow electrodes, IEEE Trans. on Plasma Sci., 2017, 45(12):3110-3113 (9,9) 100. Chengxun Yuan*, E. A. Bogdanov, S. I. Eliseev, and A. A. Kudryavtsev, 1D kinetic simulations of a short glow discharge in helium, Phys. plasmas, 2017, 24(7): 073507. (13,13) 101. Ying Wang, Chengxun Yuan, Jieshu Jia, Ruilin Gao, Yunhai Hong, Jingfeng Yao, Hui Li, Zhongxiang Zhou, and Jian Wu, Propagation characters of multi-Gaussian beam with large eccentric displacement in collisionless plasma: Higher order paraxial theory. Phys. plasmas, 2017, 24(06): 062306 102. Yunhai Hong, Chengxun Yuan*, Jieshu Jia, Ruilin Gao, Ying Wang, Zhongxiang Zhou, Xiaoou Wang, Hui Li And Jian Wu. Propagation characteristics of microwaves in dusty plasmas with multi-collisions. Plasma Sci. Technol., 2017, 19: 055301.(13,13) 2016 103. Jieshu Jia, Chengxun Yuan*, Sha Liu, Feng Yue, Ruilin Gao, Ying Wang, Zhongxiang Zhou, Jian Wu, and Hui Li. Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma. Phys. plasmas, 2016, 23(4): 043302(19,19) 104. Jieshu Jia, Chengxun Yuan*, Ruilin Gao, Sha Liu, Feng Yue, Ying Wang, Zhongxiang Zhou, Jian Wu, and Hui Li., Transmission characteristics of microwave in a glow-discharge dusty plasma. Phys. Plasmas, 2016, 23(7): 073705 (8,8) 105. Ruilin Gao, Chengxun Yuan*, Sha Liu, Feng Yue, Jieshu Jia. Properties of a large volume glow discharge helium plasma by measuring the broadband microwave phase shift in different pressures. Phys. Plasmas, 2016, 23(6): 063302 106. Ruilin Gao, Chengxun Yuan*, Sha Liu, Feng Yue, Jieshu Jia, Zhongxiang Zhou, Jian Wu, Hui Li. Broadband microwave propagation in a novel large coaxial gridded hollow cathode helium plasma. Phys. Plasmas, 2016, 23(6): 063304(7,7) 107. Ruilin Gao, Chengxun Yuan*, Hui Li, Jieshu Jia, Zhongxiang Zhou, Ying Wang, Xiaoou Wang, Jian Wu. Broadband microwave characteristics of a novel coaxial gridded hollow cathode argon plasma. Rev. Sci. Instrum., 2016, 87: 083506 108. Ruilin Gao, Chengxun Yuan*, Jieshu Jia, Zhongxiang Zhou, Ying Wang, Xiaoou Wang, Hui Li, and Jian Wu. Broadband microwave measurement of electron temperature of a large coaxial gridded hollow cathode helium plasma. Phys. Plasmas, 2016, 23: 103304 109. Liang Y, Chengxun Yuan*, Ruilin Gao, Jieshu Jia, G Kirsanov, V Bekasov, A Marin, A A Kudryavtsev, S I Eliseev and Zhongxiang Zhou. Investigation of low pressure glow discharge in a coaxial gridded hollow cathode. IEEE Trans. Plasma Sci., 2016, 44(12): 2965-2972(12,12) 110. Jieshu Jia, Chengxun Yuan*, A. A. Kudryavtsev, S.I. Eliseev, G V Kirsanov, V S Bekasov, Ruilin Gao, Zhongxiang Zhou. Numerical and experimental diagnostics of dusty plasma in a coaxial gridded hollow cathode discharge. IEEE Trans. Plasma Sci., 2016, 44(12): 2973-2978 (17,17) 111. Yao Jingfeng, Chengxun Yuan*, Ruilin Gao, Jieshu Jia, Ying Wang, Zhongxiang Zhou, Xiaoou Wang, Jian Wu, Hui Li. The method of impedance transformation for electromagnetic waves propagating in one-dimension plasma photonic crystal. Phys. Plasmas, 2016, 23: 083524 (6.6) 112. Ruilin Gao, Chengxun Yuan*, Hui Li, Jieshu Jia, Zhongxiang Zhou, Jian Wu, Ying Wang and Xiaoou Wang. Absolute continuum intensity diagnostics of a novel large coaxial gridded hollow cathode argon plasma. Phys. Plasmas, 2016, 23: 083525 (7,7) 113. Hui Li, Jian Wu, Chengxun Yuan, Zhongxiang Zhou. The electrical conductivity of weakly ionized plasma containing dust particles. Phys. Lett. A, 2016, 380(33): 2540-2543 114. Hui Li, Jian Wu, Zhongxiang Zhou, Chengxun Yuan. Propagation of electromagnetic wave in dusty plasma and the influence of dust size distribution. Phys. Plasmas, 2016, 23(7): 073702 115. Hui Li, Jian Wu, Zhongxiang Zhou, Chengxun Yuan. The dielectric function of weakly ionized dusty plasmas. Phys. Plasmas, 2016, 23(7): 073301. 116. Xiuli Jia, Xiaoou Wang, Chengxun Yuan, Qingxin Meng, and Zhongxiang Zhou Novel dynamic tuning of broadband visible metamaterial perfect absorber using graphene, J. Appl. Phys. 2016, 120: 033101 117. Xiuli Jia, Qingxin Meng, Chengxun Yuan, Zhongxiang Zhou, Xiaoou Wang. Visible light broadband perfect absorbers. Phys. Plasmas, 2016, 23(3): 032103 118. Xiuli Jia, Xiaoou Wang, Qingxin Meng, Chengxun Yuan, Zhongxiang Zhou. A numerical study of dynamic tunability of perfect absorption with temperature in the visible region based on a nanostructure containing multilayer graphene. Opt. Comm., 2016, 372: 172-179. 119. Xiuli Jia, Qingxin Meng, Chengxun Yuan, Zhongxiang Zhou, Xiaoou Wang. A novel chiral nano structure for optical activities and negative refractive index. Optik, 2016, 127(14): 5738-5742 2015 120. Jieshu Jia, Chengxun Yuan*, Ruilin Gao, Ying Wang, Yaoze Liu, Junying Gao, Zhongxiang Zhou, Xiudong Sun, Jian Wu, Hui Li, Shaozhi Pu. Propagation of electromagnetic waves in a weakly ionized dusty plasma. J. Phys. D: Appl. Phys., 2015, 48(46): 465201 (26,26) 2014 121. Shaozhi Pu, Chunfeng Hou, Chengxun Yuan, Soliton switching in inhomogeneous nonlocal media. Optik, 2014 125: 1075-1078 122. Wenlong Yang, H J Xiu, Y L Xiong, J Wang, Chengxun Yuan, J Wei, Zhongxiang Zhou, The structure and optical properties of lead-free transparent KNLTN–La0:01 ceramics prepared by conventional sintering technique, Materials Science-Poland, 2014, 32(4): 597-603 2013 123. Ruilin Gao, Chengxun Yuan*, Ying Wang, Zhongxiang Zhou, Dewei Gong, Yuan Fang, Xianwei Rong. The terahertz characteristics of a sandwich type microplasma structure. J. Appl. Phys., 2013, 114(12): 123302. 124. Hongguo Sun, Zhongxiang Zhou, Chengxun Yuan, Xiaoniu Yang. Research with KNbO3 bulk and surface properties based on density functional theory. Chin. Phys. Lett., 2013, 30(2): 027302 2012 125. Ying Wang, Chengxun Yuan, Ruilin Gao and Zhongxiang Zhou. Analytical calculations of intense gaussian laser beam propagating in plasmas with relativistic collision correction. Phys. Plasmas, 2012, 19(10): 103109 126. Ying Wang, Chengxun Yuan, Zhongxiang Zhou, Lei Li and Yanwei Du. Propagating characters of gaussian laser beam in plasmas with non-homogeneous radial temperature distribution. Phys. Lett. A, 2012, 376(14): 1211-1214 127. Ying Wang, Chengxun Yuan, Zhongxiang Zhou, Ruilin Gao, Lei Li, Yanwei Du. Propagation characteristics of a gaussian laser beam in plasma with modulated collision frequency. Phys. Plasmas, 2012, 19(8): 083114 128. Hongguo Sun, Zhongxiang Zhou, Chengxun Yuan, WenlongYang, He Wang, Structural, Electronic and optical properties of KTa0.5Nb0.5o3 surface: a first-principles study, Chin. Phys. Lett., 2012, 29(1): 017303 129. Shaozhi Pu, Chunfeng Hou, Kaiyun Zhan and Chengxun Yuan, Dark and gray solitons in nematic liquid crystals, Phys. Scr., 2012, 85: 015402 130. Shaozhi Pu, Chunfeng Hou, Kaiyun Zhan, Chengxun Yuan and Yanwei Du, Beam steering in a nonlocal medium with inhomogeneous nonlinearity. J. Opt. 2012, 14:105201 131. Shaozhi Pu, Chunfeng Hou, Kaiyun Zhan, Chengxun Yuan and Yanwei Du, Spatial solitons in nonlocal materials with defocusing defects, Opt. Comm., 2012, 285:1456-1460 132. Shaozhi Pu, Chunfeng Hou, Kaiyun Zhan, Chengxun Yuan and Yanwei Du, Lagrangian approach for dark soliton in nonlocalnon linear media, Opt. Comm., 2012, 285:3631-3635 2011 133. Chengxun Yuan*, Zhongxiang Zhou, Jingwen Zhang, Xiaoli Xiang, Feng Yue and Hongguo Sun. Properties of propagation of electromagnetic wave in a multilayer radar-absorbing structure with plasma-and radar-absorbing material. IEEE Trans. Plasma Sci., 2011, 39(9): 1768-1775. (57,57) 134. Chengxun Yuan*, Zhongxiang Zhou, Jingwen Zhang, Xiaoli Xiang, Feng Yue, Hongguo Sun. FDTD Analysis of terahertz wave propagation in a high-temperature unmagnetized plasma slab. IEEE Trans. Plasma Sci., 2011, 39(7): 1577-1584. (56,56) 135. Chengxun Yuan*, Zhongxiang Zhou, Jingwen Zhang, Xiaoli Xiang, Hongguo Sun, He Wang, Yanwei Du. Propagation of terahertz waves in an atmospheric pressure microplasma with epstein electron density profile. J. Appl. Phys., 2011, 109(6): 063305 (17,17) 136. Chengxun Yuan*, Zhongxiang Zhou, Xiaoli Xiang, Hongguo Sun, He Wang, Mengda Xing, Zhengjun Luo. Propagation properties of broadband terahertz pulses through a bounded magnetized thermal plasma. Nucl. Instrum. Meth. B, 2011, 269(1): 23-29 (26,26) 137. Zhongxiang Zhou, Ying Wang, Chengxun Yuan and Yanwei Du. Self-focusing and defocusing of gaussian laser beams in plasmas with linear temperature ramp. Phys. Plasmas, 2011, 18(7): 073107 138. Ying Wang, Chengxun Yuan, Zhongxiang Zhou, Lei Li and Yanwei Du. Propagation of gaussian laser beam in cold plasma of drude model. Phys. Plasmas, 2011, 18(11): 113105 139. Hongguo Sun , Zhongxiang Zhou, Chengxun Yuan, Shen Yanqing, Properties of KNTN [1 0 0] surfaces: a first-principles study, Comp. Mater. Sci., 2021, 50: 2354-2358 2010 140. Chengxun Yuan*, Zhongxiang Zhou, Xiaoli Xiang, Hongguo Sun, Shaozhi Pu. Propagation of broadband terahertz pulses through a dense-magnetized- collisional-bounded plasma layer[J]. Phys. Plasmas, 2010, 17(11): 113304 (37,37) 141. Chengxun Yuan*, Zhongxiang Zhou, Hongguo Sun. Reflection properties of electromagnetic wave in a bounded plasma slab. IEEE Trans. Plasma Sci., 2010, 38(12): 3348-3355 (61,61) 142. Hongguo Sun, Zhongxiang Zhou, Yanqing Shen, ChengXun Yuan, The effect of B-site cations on the properties of KTaxNb1xO3 [1 0 0] surface: A study of density functional theory, Comp. Mater. Sci., 2010, 50:338-343 2006 143. Yunliang Wang, Zhongxiang Zhou, Chengxun Yuan, Xiangqian Jiang, Ruhu Qin, Two-dimensional relativistic electromagnetic dromion-like soliton in a cold transparent plasma. Chin. Phys., 2006, 15(1): 156. 144. Yunliang Wang, Zhongxiang Zhou, Xiangqian Jiang, Chengxun Yuan et al. relativistic electromagnetic solitary wave in a cylindrical magnetized plasma. Chin. Phys. Lett., 2006, 23(3): 664. 中文文章 1. 李磊, 陈晓东, 袁承勋*, 周忠祥*, Ar等离子体射流发射光谱诊断研究. 发光学报, 2019, 40(8):1049-1054 2. 李泽斌, 王海露, 袁承勋, 姚静锋, 俞鸷, 周忠祥. 等离子体复合雷达吸波材料的电磁特性, 电波科学学报, 2018, 33(6):695-700 3. 王海露,刘飞,袁承勋,周忠祥,黄魁. 等离子体隐身技术研究进展,防护工程,2018,40(3):67-78 4. 王海露,刘飞,袁承勋,李泽斌,周忠祥,吴祥云. 等离子体隐身技术在地面重要军事目标上的应用分析,防护工程,2018,40(4):58-63 5. 刘耀泽, 袁承勋*, 高瑞林, 贾洁姝, 周忠祥, 同轴空心阴极氦等离子体的电子激发温度研究, 发光学报, 2016,37(10):1299-1304 6. 邢孟达, 周忠祥, 罗政军, 袁承勋, 圆锥形卫星天线太阳光反射特性仿真, 红外与激光工程, 2012,41(2):489-493 7. 袁承勋, 周忠祥, 秦汝虎, 孙洪国, 王云良, 段雪松, 张海丰. 实现轻、薄、宽涂层吸波材料的技术途径, 哈尔滨工业大学学报, 2007, 39(6):956-959 8. 孙洪国, 周忠祥, 秦汝虎, 袁承勋, 张海丰, 卢颖. 涂层吸波材料中表面反射的影响及优化设计, 哈尔滨工业大学学报, 2007, 39(3):474-477 9. 王贺, 孙洪国, 张海丰, 袁承勋. 钴镍合金的制备与性能测试,佳木斯大学学报, 2007.25(4):463-465 Conference article: 1. Anatoly A. Kudryavtsev, Chengxun Yuan, Shixin Zhao, Alexander M. Astafiev, Gennady D. Shabanov and Alexander S. Chirtsov. Visualization of the vortex structure formation of a long-lived afterglow arising in a symmetrical pulsed discharge. 2024,2709: 012002 2. Chengxun Yuan. Jingfeng Yao, and Zijia Chu. The nonlinear dynamic behaviors in an undriven direct current glow discharge: bifurcation-remerging process, intermittency and hysteresis. 7th Asia-Pacific Conference on Plasma Physics,(AAPPS-DPP 2023) November 12-17, 2023, Port Messe Nagoya, Japan (邀请报告) 3. Jingfeng Yao, Chengxun Yuan, Study of low pressure gas discharge plasma by using nonlocal approximation. 7th Asia-Pacific Conference on Plasma Physics, (AAPPS-DPP 2023) November 12-17, 2023, Port Messe Nagoya, Japan 4. 陈晨,王海露,姚静锋,袁承勋. 小尺寸等离子体辉光放电正柱区对微波传输的影响. 第十八届全国电波传播年会, 中国青岛, 2022.9.24-9.27 (口头报告) 5. 李勇,李辉,吴健,吕兴宝,袁承勋,周忠祥. 电离层人工调制的磁响应特性. 第十八届全国电波传播年会, 中国青岛2022.9.24-9.27(口头报告) 6. 刘子健,姚静锋,袁承勋. 2.856GHz有源微波脉冲压缩器参数设计.第十八届全国电波传播年会, 中国青岛2022.9.24-9.27(张贴报告) 7. 柴焱,袁承勋.等离子体绝对负电导率形成的调控机理,第21届全国等离子体科学与技术会议. 2023年10月20-23日,中国广州·南沙. 8. 初子佳,袁承勋. 无外加周期驱动下的直流辉光放电的倍周期分岔-再弥合过程及阵发性混沌的数值模拟.第21届全国等离子体科学与技术会议. 2023年10月20-23日,中国广州·南沙. 9. 李勇,袁承勋. 中纬地区人工调制 ULF 电流特性.第21届全国等离子体科学与技术会议. 2023年10月20-23日,中国广州·南沙. 10. 周晨,袁承勋. 基于等离子体电子能谱理论检测气体杂质. 第21届全国等离子体科学与技术会议. 2023年10月20-23日,中国广州·南沙. 11. 李志永,袁承勋. 栅极电极直流辉光放电的放电特性研究.第21届全国等离子体科学与技术会议. 2023年10月20-23日,中国广州·南沙. 12. 李健飞, 袁承勋.等离子体黑障中拓扑边缘态的实验观测.第21届全国等离子体科学与技术会议. 2023年10月20-23日,中国广州·南沙. 13. 陈晨,袁承勋. 等离子体辉光放电正柱区尘埃悬浮对微波传播的影响. 第九届全国复杂等离子体物理及应用研讨会2023年6月17-18 中国 上海 14. 柴焱,袁承勋. 基于尘埃等离子体实验实现对等离子体EDF反转和绝对负电导率形成机理的验证.第八届全国复杂等离子体物理及应用研讨会,中国 苏州. 2022.11.12-23 15. 陈晨,袁承勋. 尘埃等离子体中带电粒子非单调分布和双极场反转的EEDF形成的特性. 第八届全国复杂等离子体物理及应用研讨会,中国 苏州. 2022.11.12-23 16. Zhou Chen, Vasily Kozhevnikov, Vladislav Igumnov, Yao Jingfeng, Yuan Chengxun. Uncovering the Fundamental Effects of a Non-Maxwellian Distribution Function in Vacuum Electronics Simulation. EAPPC & BEAMS 2022, 09, 18-22, Seoul.(Poster) 17. Zhao Shixin, Vladislav Igumnov, Vasily Kozhevnikov, Yao Jingfeng, Yuan Chengxun. The Numerical Simulation of a Microwave to Plasma Interaction in the S-Band Microwave Pulse Compressor. EAPPC & BEAMS 2022, 18-22, Seoul.(Oral) 18. Anatoly Kudryavtsev, Chengxun Yuan, Eugene Bogdanov. 75th Annual Gaseous Electronics Conference. October 3–7, 2022, Sendai, Japan 19. 叶鑫,王海露,王咏歌,姚静锋,袁承勋,周忠祥. 一种用于波束扫描应用的等离子体窗天线, 第十七届全国电波传播年会, 2022年8月,中国延安(口头报告) 20. 王咏歌,叶鑫,姚静锋,袁承勋,周忠祥. 等离子体窗天线中谐振现象的仿真研究, 第十七届全国电波传播年会, 2022年8月,中国延安(口头报告) 21. 李健飞,王海露,姚静锋,袁承勋,周忠祥. 等离子体光子晶体微波调控研究. 第十七届全国电波传播年会, 2022年8月,中国延安(口头报告) 22. 姚静锋,费汉露,袁承勋,李健飞,周忠祥. 电磁波在局域及非局域等离子体中的传输特性. 第十七届全国电波传播年会, 2022年8月,中国延安(口头报告) 23. 初子佳、袁承勋*、周忠祥、姚静锋. 同轴网格空心阴极分区特性的数值仿真研究. 第 20 届全国等离子体科学技术会议, 哈尔滨,2022,4.23-24(口头报告) 24. 周晨、袁承勋*、周忠祥*. 基于等离子体电子能谱在开放环境中检测气体杂质:含 CH4混合物. 第 20 届全国等离子体科学技术会议, 哈尔滨,2022,4.23-24(口头报告) 25. 李健飞、袁承勋*、周忠祥*、姚静锋. 交流驱动反刷式电极的气体放电特性研究. 第 20 届全国等离子体科学技术会议, 哈尔滨,2022,4.23-24(口头报告) 26. 赵世鑫, 袁承勋*, O.M. Zherebtsov, G.D. Shabanov, A.A.Kudryavtsev, 姚静锋, 吕兴宝, 李健飞, 周忠祥 磁场对大气压水基等离子体团的影响.第 20 届全国等离子体科学技术会议, 哈尔滨,2022,4.23-24(口头报告) 27. 姚静锋、袁承勋*、周忠祥. 等离子体电子能量分布函数反转及其负电导率. 第 20 届全国等离子体科学技术会议, 哈尔滨,2022,4.23-24(口头报告) 28. 丁哲、袁承勋*、周忠祥*. 结合机器学习的等离子体朗缪尔探针诊断. 第 20 届全国等离子体科学技术会议, 哈尔滨,2022,4.23-24(张贴报告) 29. 王海露、姚静锋、方川、周忠祥、袁承勋*、李和平*. 太赫兹电磁波在电弧等离子体中传输特性的数值模拟研究. 第 20 届全国等离子体科学技术会议, 哈尔滨,2022,4.23-24(张贴报告) 30. Chengxun Yuan, Eugene Bogdanov, Anatoly Kudryavtsev, Jingfeng Yao, Yong Li. Heating rate of thermal electrons by the fast part of EDF in the ionosphere, ISAPE2021, Zhu Hai, China, 1-4 Dec, 2021. 31. Chengxun Yuan, Eugene Bogdanov, Anatoly Kudryavtsev, Jingfeng Yao, Yong Li. Numerical simulation of the dynamics of the temperature of electrons heated by fast electrons formed during the modification of ionosphere by RF waves. ISAPE2021, Zhu Hai, China, 1-4 Dec, 2021. 32. Aleksandr Astafiev, Anatoly Kudryavtsev, Alexander Chtrtsov, Chengxun Yuan, Jingfeng Yao, Zhongxiang Zhou. Characteristics of a short linear antenna with a cylindrical plasma reflector. ISAPE2021, Zhu Hai, China, 1-4 Dec, 2021. 33. Chengxun Yuan, Jingfeng Yao, Anatoly A Kudryavtsev, Vladislav S Igumnov, Sergey N Artemenko, Vasily Yu Kozhevnikov, Andrei V Kozyrev. Microwave Switch in a Circular Waveguide with Gas Microwave Discharge in a High-power Microwave Pulse Compression System For a Solar Space. ISAPE2021, Zhu Hai, China, 1-4 Dec, 2021. 34. Hanlu Fei, Jingfeng Yao, Jianfei Li, Chengxun Yuan. Focusing effect of inhomogeneous plasma on electromagnetic wave. ISAPE2021, Zhu Hai, China, 1-4 Dec, 2021. 35. Bohan Ren, Jingfeg Yao, Chengxun Yuan. Microwave cavity resonance spectrum used for plasma diagnostic in AC glow discharge plasma. ISAPE2021, Zhu Hai, China, 1-4 Dec, 2021. 36. Jingfeng Yao, Chengxun Yuan, Zhongxiang Zhou,The diagnostic of AC glow discharge plasma,EAPETEA-8, Xi’an, China (18-21 October 2021) 37. Chengxun Yuan, Chen Zhou, Jingfeng Yao, Zhongxiang Zhou and A. A. Kudryavtsev,Use of plasma electron spectroscopy method to detect organic molecules: hydrocarbons, alcohols, and ammonia in nonlocal plasma of short glow discharge,EAPETEA-8, Xi’an, China (18-21 October 2021) 38. Jieshu Jia, Ruilin Gao, Baozhuo Xie, Dao Jia, Feiming Wei, Yuan Zhang, Zichang Liang, and Chengxun Yuan, Experimental Study of Scattering Characteristics on DALI Controlled Plasma-covered Target, 2021, 28-30 May, Wuhan, China 39. 袁承勋*, 姚静锋, 周忠祥. 典型辉光放电过程的非局域动理学描述, 2020 年全国高电压与放电等离子体学术会议, 2020, 10.23~25, 哈尔滨(邀请报告) 40. 姚静锋, 袁承勋*, 周忠祥*. 电磁波在等离子体-金属板模型中的反射特性研究, 2020 年全国高电压与放电等离子体学术会议, 2020, 10.23~25, 哈尔滨(口头报告) 41. 周晨, 俞鸷, 姚静锋, 袁承勋*, 周忠祥*. 大气压下微空心阴极放电诊断, 2020 年全国高电压与放电等离子体学术会议, 2020, 10.23~25, 哈尔滨(口头报告) 42. 姚静锋, 袁承勋, 李辉, 吴健, 吕兴宝, 周忠祥, 王莹. 等离子体复合超材料电磁特性研究. 第十六届全国电波传播学术讨论年会. 2020.11.18-20, 海口(张贴报告), 电波科学学报, 2020, 35, 增刊304-308 43. 吕兴宝, 袁承勋, 李辉, 吴健, 姚静锋, 周忠祥, 王晓鸥. 新型复合网格电极结构放电等离子体中微波的衰减特性. 第十六届全国电波传播学术讨论年会2020.11.18-20, 海口, (口头报告)电波科学学报, 2020, 35, 增刊309-313 44. 李金明, 李勇, 李辉, 吴健, 袁承勋, 周忠祥, 王晓鸥. 电离层中电导率和介电常数的动理学研究. 第十六届全国电波传播学术讨论年会2020.11.18-20, 海口(口头报告)电波科学学报, 2020, 35, 增刊331-334 45. 李书博, 袁承勋. 气压和磁场对直流辉光放电正柱区尘埃等离子体中带电粒子和通量的空间分布的影响,第六届全国复杂等离子体物理及应用研讨. 2020.11.14-11.15, 上海(口头报告) 46. 丁哲, 袁承勋. 基于机器学习增强技术的尘埃等离子体探针诊断 第六届全国复杂等离子体物理及应用研讨会,2020.11.14-11.15 上海(口头报告) 47. Jinming Li, Chengxun Yuan, Zhongxiang Zhou, Xiaoou Wang, A. A. Kudryavtsev, Iya P. Kurlyandskaya, V. I. Demidov. Probe measurements of electron distribution function in a large-volume glow discharge device with coaxial gridded hollow electrodes[C], 61st Annual Meeting of the APS Division of Plasma Physics, 2019.11.21-25, Fort Lauderdale, Florida 48. Chengxun Yuan, Jingfeng Yao, Jinyue Fan, Ying Wang, Xiaoou Wang, Zhongxiang Zhou, A. A. Kudryavtsev, The Propagation Characteristics of Terahertz Wave in a DBD Plasma, Piers2019 Rome, 17- 20 June 2019口头报告, 全文 49. Ying Wang, Chengxun Yuan, Zhongxiang Zhou, Nonlinear Propagating Characteristics of Gaussian Laser Beam in Weakly Ionized Dusty Plasma, Piers2019 Rome, 口头报告 50. Shubo Li, Hengyang Xia, Chengxun Yuan, Zhe Ding, Xiaoou Wang, Zhongxiang Zhou, A. A. Kudryavtsev, The Microwave Propagation in a Dust Plasma of a DC Glow Discharge, Piers2019 Rome, 口头报告, 全文 51. Jingfeng Yao, Zhi Yu, Chengxun Yuan, Ying Wang, Xiaoou Wang, Zhongxiang Zhou, A. A. Kudryavtsev, Analysis and Optimization of Microwave Transmission in a Magnetized Plasma-Metal Model, Piers2019 Rome, 口头报告, 全文 52. Anatoly A. Kudryavtsev, Almaz I. Saifutdinov, Sergey S. Sysoev, Chengxun Yuan, Diagnostics of Large Volume Coaxial Gridded Hollow Cathode DC Discharge for the Experiments of Electromagnetic Wave Propagation in Plasma, Piers2019 Rome, 口头报告 53. Xingbao Lv, Xiaoou Wang, Jingfeng Yao, Chengxun Yuan, Zhe Ding, Zhongxiang Zhou, A. A. Kudryavtsev, Electromagnetic Wave Propagation in a DC Grid Anode Discharge Helium Plasma, Piers2019 Rome, 口头报告, 全文 54. Stepan I. Eliseev, Anatoly A. Kudryavtsev, Chengxun Yuan, Numerical Simulation of Electromagnetic-wave Absorption of a Plasma Layer of Plane Obstructed Glow Discharge with Gridded Anode, Piers2019 Rome, 口头报告 55. A. A. Kudryavtsev, Kurban M. Rabadanov, Chengxun Yuan, Effect of EDF Nonlocality on the Propagation Coefficients of Electromagnetic Waves in Plasma, Piers2019 Rome, 口头报告 56. 袁承勋, 李书博, 丁哲, 周忠祥, 李辉, 吴健. 直流柱状尘埃等离子体微波传输特性研究, 第十五届全国电波传播年会, 2019,10 合肥, 口头报告 57. Igor K. Getmanov, Anatoly A. Kudryavtsev, Chengxun Yuan, Electrical Conductivity and Dielectric Permittivity in Microwave Non-maxwellian Plasmas, Piers2019 Rome, 口头报告, 全文 58. Dmitry V. Bogdanov, E. A. Bogdanov, A. A. Kudryavtsev, Chengxun Yuan, Influence of dust particles on a wave propagation in a glow discharge plasma, Piers 2019 Rome, 口头报告 59. 俞鸷,姚静锋,袁承勋,周忠祥. 直流辉光放电中正柱区快电子检测的平滑效应, 第十九届全国等离子体科学技术会议, 大连2019.08 60. 吕兴宝,姚静锋,袁承勋,周忠祥,王晓. 直流网格辉光放电等离子体的微波反射诊断, 第十九届全国等离子体科学技术会议, 大连2019.08 61. 丁哲,李书博,袁承勋*,Kudryavtsev Anatoly,周忠祥,双极场对辉光放电正柱区中尘埃粒子悬浮条件的影响随放电管空间方向的变化, 第十九届全国等离子体科学技术会议, 大连2019.08 62. 赵世鑫、袁承勋*、樊靳跃、姚静锋、周忠祥, 太赫兹波在介质阻挡放电等离子体中的传输特性研究, 第十九届全国等离子体科学技术会议, 大连2019.08 63. 姚静锋, 柴焱, 袁承勋*, 周忠祥, 同轴网格空心阴极等离子体可调谐微波波导, 第十九届全国等离子体科学技术会议, 大连2019.08 64. 梁勇敢, 田瑞焕, 李辉, 袁承勋, 周忠祥, 田浩. 尘埃等离子体输运与电离系数的动理论模型研究, 同轴网格空心阴极等离子体可调谐微波波导, 第十九届全国等离子体科学技术会议, 大连2019.08 65. 李书博,丁哲,袁承勋,周忠祥*,Kudryavtsev Anatoly, 直流辉光放电磁化尘埃等离子体的数值模拟, 第十九届全国等离子体科学技术会议, 大连2019.08 66. 李金明,袁承勋,周忠祥,王晓鸥. 电磁波在非麦克斯韦分布等离子体中的传输特性, 第十九届全国等离子体科学技术会议, 大连2019.08 67. 李昌开,俞鸷,袁承勋*,周忠祥. 环形阵列等离子体天线设计及性能测试, 第十九届全国等离子体科学技术会议, 大连2019.08 68. 袁承勋, 李书博, 丁哲, 周忠祥, 李辉, 吴健. 直流柱状尘埃等离子体微波传输特性研究, 第十五届全国电波传播年会, 安徽合肥2019.10 69. Zhe Ding, Chengxun Yuan, Shubo Li, Zhongxiang Zhou, A. A. Kudryavtsev, Diagnostics of Positive Column of Glow Discharge in Argon with Dust particles, ICPAT-12, 2019.09 70. Jingfeng Yao, Chengxun Yuan, Zhi Yu, Zhouxiang Zhou, The influence of plasma distribution on microwave reflection in a plasma-metal model, ICPAT-12, 2019.09 71. D. Bogdanov, E. Bogdanov, A. Kudryavtsev, Chengxun Yuan, Influence of the spatial distribution of the dust particles density on the radial profiles formation of particles and fluxes in a positive column of a glow discharge, ICPAT-12, 2019.09 72. Jinming Li, Chengxun Yuan, Zhongxiang Zhou, Xiaoou Wang, A. A. Kudryavtsev, I.K. Getmanov, The Effects of Non-Maxwellian Distribution Function on the Conductivity and Permittivity in Plasma, ICPAT-12, 2019.09 73. A.A. Kudryavtsev, A.I. Saifutdinov, S.S. Sysoev, Chengxun Yuan, Zhe Ding, Shubo Li, The influence of the ambipolar field on the levitation conditions of dust particles in the positive column of the glow discharge with a change the spatial orientation of the discharge tube, ICPAT-12, 2019.09 74. Song Zhenjia, Lijun, Shi Kongzhong, He San, Chengxun Yuan, Zhongxiang Zhou. The microwave absorbing performance of Co2%2B-Ti4%2B co-doped barium ferrite ceramics. The 12th International Symposium on Antennas,Propagation and EM Theory, ISAPE2018:2018. Dec4-6, Hangzhou, China, 口头报告 75. Jieshu Jia, Ruilin Gao, Liangshuai Guo, Chengxun Yuan, Zhongxiang Zhou. Propagation of Electromagnetic Wave in a Coaxial Gridded Hollow Cathode Dusty Plasma. The 12th International Symposium on Antennas,Propagation and EM Theory, ISAPE2018:2018. Dec4-6, Hangzhou, China, 口头报告 76. Jinyue Fan, Ying Wang, Chengxun Yuan, Jingfeng Yao, Zhongxiang Zhou and Xiaoou Wang. The nonlinear propagation of terahertz wave in plasmas. The 12th International Symposium on Antennas,Propagation and EM Theory, ISAPE2018:2018. Dec4-6, Hangzhou, China, 口头报告 77. Jingfeng Yao, Zhi Yu, Chengxun Yuan, Zhongxiang Zhou, Hialu Wang and Zebin Li. Microwave technology used for plasma diagnostic in complicated situations, The 12th International Symposium on Antennas,Propagation and EM Theory, ISAPE2018:2018. Dec4-6, Hangzhou, China, 口头报告 78. Jinming Li, Chengxun Yuan, zhongxiang Zhou, A. A. kudryavtsev, Xiaoou Wang, Effects of Druyvesteyn Distribution to Transmission Coefficients in Plasma, The 12th International Symposium on Antennas,Propagation and EM Theory, ISAPE2018:2018. Dec4-6, Hangzhou, China, 口头报告 79. Chengxun Yuan, The Influence of Dust Particles on Glow Discharge Plasma. 10th International Workshop on Plasma Scientech for All Something (PLASAS-10), 2018, July 29-Aug.1, Dalian, China(邀请报告) 80. A. A. Kudryavtsev, K. Rabadanov, Chengxun Yuan, Zhongxiang. Zhou, The Influence of Ambipolar Electric Field on the EDF Formation and the Electron Processes in Bounded low Temperature Plasmas, ICPAT-11, 2019, Jan. 22-24, Abu Dhabi, UAE 81. Chengxun Yuan, Y. Liang and A. A. Kudryavtsev, The Non-Local Electron Kinetics for a Low-Pressure Glow Discharge Dusty Plasma, ICPAT-11, 2019, Jan. 22-24, Abu Dhabi, UAE 82. D. Bogdanov, E. Bogdanov, A. Kudryavtsev and Chengxun Yuan, Scaling Laws for the Formation of Spatial Distributions of Particles and Fluxes in a Dusty Plasma of a Glow Discharge, ICPAT-11, 2019, Jan. 22-24, Abu Dhabi, UAE 83. 袁承勋, 姚静锋, 李辉, 吴健, 周忠祥. 等离子体对电磁波的吸收特征优化研究, 第十四届全国电波传播学术讨论年会, 2017.9 青岛, 分会报告 (分会主持, 大会程序委员会委员) 84. 田瑞焕, 袁承勋, 姜永远, 周忠祥, 直流放电尘埃等离子体中的双极性扩散和非双极性扩散. 第十八届全国等离子体科学技术会议, 2017.7, 西安, 分会报告 85. 姚静锋, 袁承勋, 周忠祥, 一维等离子体光子晶体的微波传输特性实验研究, 第十八届全国等离子体科学技术会议, 2017.7, 西安, 分会报告 86. 袁承勋, 尘埃等离子体中电磁波传输特性实验研究, 第三届全国复杂等离子体物理及应用研讨会, 2017.4.7-4.9, 苏州, 特邀报告 87. V. Bekasov, Chengxun Yuan, S. Eliseev, and A. Kudryavtsev; Self-consistent Numerical Model for Simulation of Wave Propagation through Plasma Layer, PIERS 2017, Singapore, 19—22 November, 2017 (Oral) 88. Chengxun Yuan, Bekasov Vladimir, and Anatoly Kudryavtsev; Wave Propagation in Non-Maxwellian Plasma, PIERS 2017, Singapore, 19—22 November, 2017(Oral) 89. Chengxun Yuan, Bekasov Vladimir, Stepan Eliseev, and Anatoly Kudryavtsev; Numerical Model for Simulation of Wave Propagation through Plasma Layer, PIERS 2017, Singapore, 19—22 November, 2017(Oral) 90. Chengxun Yuan, V. S. Bekasov, and A. A. Kudryavtsev, Wave Propagation Coe±cients in Non-Maxwellian Plasma, PIERS 2017, Singapore, 19—22 November, 2017(Oral) 91. S. I. Eliseev, Chengxun Yuan, and A. A. Kudryavtsev; DC Discharge with Gridded Anode as a Plasma Source for Experiments on Electromagnetic Wave Propagation, PIERS 2017, Singapore, 19—22 November, 2017(Oral) 92. Chengxun Yuan*, Jingfeng Yao, Zhongxiang Zhou, and A. A. Kudryavtsev, The Transmission of Microwave in One-dimension Plasma Photonic Crystal, PIERS 2017, Singapore, 19—22 November, 2017(Oral) 93. Yonggan Liang, Chengxun Yuan*, Zhongxiang Zhou, and A. A. Kudryavtsev, The Experimental Investigation of Propagation Characteristics of Electromagnetic Waves in Dusty Plasmas, PIERS 2017, Singapore, 19—22 November, 2017(Oral) 94. Chengxun Yuan*, K M Rabadanov, E A Bogdanov, A A Kudryavtsev, Zhongxiang Zhou, The role of the ambipolar field in the formation of the EDF and the criteria of the local approximation, 2017 J. Phys.: Conf. Ser. 927 012080 95. Chengxun Yuan*, V. I. Demidov, A. A. Kudryavtsev, I. P. Kurlyandskaya, T. V. Rudakova, Z. X. Zhou, Application of nonlocal plasma technology for controlling plasma conductivity, 59th Annual Meeting of the APS, Division of Plasma Physics, October 23 - 27, 2017 Milwaukee, WI 96. 袁承勋*, 李均, 周忠祥, 反射式等离子体装置参数优化研究, 先进电磁隐身材料工程技术应用与展望研讨会, 邀请报告, 2017.11.24, 武汉 97. 李均, 袁承勋, 周忠祥, 基于磁电耦合双重调控的智能技术研究, 先进电磁隐身材料工程技术应用与展望研讨会, 2017.11.24, 武汉 98. Ruilin Gao, Chengxun Yuan, Jieshu Jia, Zhong-Xiang, Zhou,Ying Wang, Xiaoou Wang, Hui Li and Jian Wu. Broadband Microwave Propagation in a Novel Large Volume Glow Discharge Argon Plasma, ISAPE2016:81 99. Ruilin Gao, Chengxun Yuan, Jieshu Jia, Zhong-Xiang, Zhou,Ying Wang, Xiaoou Wang, Hui Li and Jian Wu. Propagation of Electromagnetic Waves in a Glow-Discharge Dusty Plasma, ISAPE2016:83 100. 袁承勋*, 高瑞林, 贾洁姝, 周忠祥, 申艳青, 李辉, 吴健, 大型等离子体系统微波传输特性研究, 第十七届全国等离子体科学技术会议, 邀请报告, 成都, 2015, 8, 16-19 101. 周忠祥, 袁承勋, 气体辉光放电及尘埃等离子体电磁波传输特性研究, 第四届全国大气压等离子体及应用研讨会, 邀请报告, 哈尔滨, 2015.10.25 102. Chengxun Yuan*, Ying Wang, Ruilin Gao, Stuart Shizhuo Yin, Ponderomotive force induced nonlinear interaction between terahertz wave and air plasmas. 2014, Proc. of SPIE Vol. 9200 92001N-1 103. Ruilin Gao, Chengxun Yuan*, Ying Wang, Hao Tian, Zhongxiang Zhou and Xianwei Rong, The Terahertz Characteristics of a Simple Microplasma Metamaterial Structrue, MTSA 2013 Shanghai 104. Chengxun Yuan*, Zhongxiang Zhou, Feng Yue . Terahertz waves propagation in a bounded plasma slab with high plasma density and high collision frequency//Intelligent Computation Technology and Automation (ICICTA), 2012 Fifth International Conference on. IEEE, 2012: 608-613 105. Ying Wang, Chengxun Yuan*, Zhongxiang Zhou, Feng Yue, Terahertz characterization of a sandwich type microplasma at atmospheric pressure, MTSA 2011, June 19-22, 2011 at Nanjing 106. Chengxun Yuan*, Zhongxiang Zhou and Xiao-Li Xiang, Properties of terahertz waves propagation in a bounded plasma slab with high collision frequency and high density, 2010 International Conference on Optoelectronics and Image Processing, 135-140 专利: 1. 袁承勋,叶鑫,王咏歌,姚静锋,阿斯塔菲耶夫·阿勒科山德,库德利亚夫谢夫·安纳托利,周忠祥. 一种大气压下低温射流等离子体的诊断系统及方法.ZL 202210853442.5. 授权日:2024-02-27 2. 袁承勋,周晨,姚静锋,周忠祥,王莹,库德利亚夫谢夫·安纳托利. 一种开放环境下气体杂质的分析检测装置及方法. ZL 2021 1 1319632.0 授权日:2023-07-21 3. 袁承勋,李金明,姚静锋,周忠祥,王晓鸥,阿斯塔菲耶夫·阿勒科山德;库德里亚夫谢夫·安纳托利. 一种基于微波谐振腔的大气压低温等离子体射流诊断装置,ZL 2020 1 1382108.3,授权日:2023-05-09 4. 袁承勋,丁哲,姚静锋,周忠祥,李书博,库德里亚夫谢夫·安纳托利. 一种等离子体中尘埃颗粒的捕获装置. ZL 2020 1 1385477.8, 授权日:2023-05-09 5. 宫德维,王传智,田浩,袁承勋,孟庆鑫,周忠祥. 一种基于钛酸钡晶体的电控光束偏转的调制方法. ZL 2020 1 0537740.4. 授权日:2023-11-21 6. 袁承勋,周晨,李辉,姚静锋,周忠祥,吴健. 一种辉光放电等离子体与微波波导相互作用的测量装置. ZL 2020 1 1078560.0,授权日:2022-09-23 7. 袁承勋,李金明,阿斯塔菲耶夫·阿勒科山德,库德利亚夫谢夫·安纳托利,周忠祥,王晓鸥. 一种采用气体放电驱动天线收发信号的装置, ZL201811504774.2 授权日:2020-08-09 8. 周忠祥,吴忧,施扣忠,李均,袁承勋,一种微波探测系统及方法,CN201610716125.3,授权日:2019-03-01 9. 娄秀涛,袁承勋,瑞小川,张治国,吴少华. 基于二极管激光的汞气连续监测装置及监测方法, CN201210055105.8, 授权日:2013-09-25 教学论文: 1. 王晓鸥, 张伶莉, 袁承勋, 李均, 黄喜强, 赵远.“工作室物理”中的演示实验, 物理与工程, 2017(08):164-167 2. 王晓鸥, 张伶莉, 袁承勋, 李均, 黄喜强, 赵远, 张宇. 学生自主选择教师上课制度的教学实践. 物理通报, 2018(4):17-20 3. 李均, 刘璐璐, 袁承勋, 孟庆鑫, 王晓鸥, 张宇, 霍雷.“一带一路”背景下中俄“大学物理”课程共建模式探索——以“热力学第一定律”为起点推进. 物理通报. 2020(09):15-18 4. 李均, 钱程屹, 马墨南, 袁承勋, 孟庆鑫, 田浩, 王晓鸥, 张宇, 霍雷. 大学物理中波动问题的关键点分析. 大学物理, 2020(09):9-16 5. 李均, 王志诚, 吴雨轩, 袁志, 袁承勋, 王莹, 孟庆鑫, 霍雷. 熵概念的延拓——从热熵到信息熵. 大学物理, 2020(10): 29-33 6. 王晓鸥,张伶莉,袁承勋,王先杰,靳辰飞,张宇. 新工科背景下的大学物理课程建设与实践. 大学物理, 2021, 40(4):45-49 7. 王晓鸥,张伶莉,袁承勋,黄喜强,刘志国,曹永印. “3%2B3”新高考制度大中学物理教学衔接的研究与实践. 物理与工程,2023,33(1):162-166 8. 李均,钱程屹,袁承勋,李杨,吴晓宏,田浩,张宇,霍雷. 中国航天工程视角下的大学物理课程思政建设探索与实践,物理与工程,2023,33(03):28-33 |