教师主页移动版

主页 > 广东省 > 华南理工大学

刘海洋

姓名 刘海洋
性别
学校 华南理工大学
部门 化学与化工学院
学位 教授
学历 教授
职称 教授
联系方式 广州市五山路381号
邮箱 chhyliu@scut.edu.cn
   
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料

更新日期:2023年9月19日 姓 名 刘海洋 性 别 男 出生年月 1965年11月 籍贯 江西寻乌县 民 族 汉族 政治面貌 群众 最后学历 博士研究生 最后学位 理学博士 技术职称 教授 导师类别 博、硕导 行政职务 系副主任 Email chhyliu@scut.edu.cn 工作单位 化学与化工学院 邮政编码 510641 通讯地址 广州市五山路381号 单位电话 020-22236805 个人主页 http://www.scut.edu.cn/ce/ 个人简介 刘海洋,教授,博士生导师。1984年7月毕业于江西大学化学系;1989年7月中山大学化学系硕士毕业;1997年7月中山大学化学系获得博士学位;台湾淡江大学与香港科技大学化学系博士后。广东省高等学校“千百十工程”第三批培养对象。现任化学化工学院化学系副主任,Molecules 中国地区编辑,广东省化学会无机化学专业委员会委员,广东省应对技术贸易壁垒学术委员会委员,广东省中药研究所特聘研究员。 工作经历 1984年7月-1986年8月: 江西冶金学院基础部化学教研室,助教1989年7月-1994年8月:赣南师范学院化学系,讲师1997年7月-至今:华南理工大学化学与化工学院,历任讲师-副教授-教授 教育经历 1980年9月–1984年6月:江西大学化学系, 获理学学士学位.1986,年9月–1989年6月:中山大学化学系, 获理学硕士学位.1994年9月–1997年7月:中山大学化学系, 获理学博士学位.1999年6月–2000年3月:台湾淡江大学化学系,博士后研究员2001年4月-2007年7月:香港科技大学化学系,博士后/助理研究员 获奖、荣誉称号 华南理工大学第六届“我最喜爱的导师”(2014年5月)华南理工大学国际教育学院2014年度,2019年度“优秀留学生导师”获得2014年度“广东省科学技术三等奖” 社会、学会及学术兼职 广东省化学会无机化学专业委员会委员;中国化学会卟啉与酞菁专业委员会委员;广东省WTO-TBT橡胶行业专业委员会委员;广东省江西寻乌商会产学研委员会主任委员;贺州市石材碳酸钙产业发展专家顾问团成员;清远市化工专业中、初级专业技术资格评审委员会评委专家;广东省中药研究所特聘研究员。 研究领域 化学生物学,光合作用产氧中心(OEC)与细胞色素P450 的基础科学研究;光动力抗癌药物与天然抗肿瘤活性物种的分离与合成研究;特异性荧光分子与细胞探针的合成及其生物医药应用。天然植物药用组分的提取,鉴定及其在中药制剂与化妆品行业中的应用。 科研项目 1. 金属咔咯与DNA的相互作用及其光动力抗癌活性 (21671068;国家自然科学基金).2. 金属咔咯配合物的催化反应 (21371059;国家自然科学基金).3. 高价态锰-氧大环配合物的结构与氧原子转移反应研究 (21171057;国家自然科学基金).4. 手性金属卟啉的磁诱导光学与不对称催化效应研究 (20971046;国家自然科学基金).5. 锰 corrole 大环配合物的合成及其催化氧化特性研究(20771039;国家自然科学基金).6. 生物降解材料己内酯的合成工艺(2022.08-2026.08,广东祥利科技有限公司)7. 口腔医学用生物质二氧化硅辅料(2021.05-2024.05;华硅(广州)生物科技股份有限公司)8. 燕窝萃取物在化妆品与抗肿瘤应用研究(2021.05--2024.05,广西自贸区燕握生物科技有限公司)9. 广谱肿瘤化疗铂剂特效减毒增效药GMDTC (2021.09-2024.05,珠海市科技创新局)10. 新型高阻燃特软电缆料与信号传输线用 B1 级阻燃低烟无卤电缆料 (2022.08-2025.08,广东祥利科技有限公司)11. 阻燃带电作业防护手套的研制 (2023.0.3-2023.12,广州双一乳胶制品有限公司)12. ClO2 气化复合装置对手术室烟雾净化及物品消毒的临床应用研究(2018.09-2020.12,广东省医学科学院)13. 化妆品原料精细化研究及优化与新产品研发联合实验室建设 (2017.10-2022.09;广东芭薇生物科技股份有限公司)14.  基于中国产地植物与花卉香精的开发(2016.05-2020.05,广州华香园生物技术有限公司)15. 森林土壤有机碳测定(2018.12-2019.12;中国科学院华南植物园) 发表论文 近三年发表论文:1.First application of Sn (IV) corrole as electrocatalyst in hydrogen evolution reaction; INORGANIC CHEMISTRY COMMUNICATIONS; 2023, 152: 110663; DOI10.1016/j.inoche.2023.110663.2. Substituent Effect on Ligand-Centered Electrocatalytic Hydrogen Evolution of Phosphorus Corroles; CHEMSUSCHEM; 2023; 16:  e2023002; DOI10.1002/cssc.202300211.3. The optimization of iron porphyrin@MOF-5 derived Fe-N-C electrocatalysts for oxygen reduction reaction in zinc-air batteries; JOURNAL OF ELECTROANALYTICAL CHEMISTRY; 2023, 936: 117381;DOI10.1016/j.jelechem.2023.117381.4. Metalloporphyrin doped macroporous ZIF-8 metal-organic framework derived M-Nx carbon material for oxygen reduction reactions; JOURNAL OF ALLOYS AND COMPOUNDS; 2023, 947: 169441; DOI10.1016/j.jallcom.2023.169441.5. Electrocatalytic Hydrogen Evolution of the Cobalt Triaryl Corroles Bearing Hydroxyl Groups; EUROPEAN JOURNAL OF INORGANIC CHEMISTRY; 2023, 26,   e2022007; DOI10.1002/ejic.202200755.6. Photodynamic antitumor activity of halogenated gallium(III) and phosphorus(V) corroles; JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY; 2023,438:114580;DOI10.1016/j.jphotochem.2023.114580.7. Electrocatalytic hydrogen evolution of manganese corrole;INTERNATIONAL JOURNAL OF HYDROGEN ENERGY;2023,48(14):5506-5517. DOI10.1016/j.ijhydene.2022.11.147.8. Gallium(III) Amide Corroles: DNA Interaction and Photodynamic Activity in Cancer Cells;CHEMPLUSCHEM, 2023,88(1): e202200413. DOI10.1002/cplu.202200413.9. Electrocatalytic Hydrogen Evolution by Water-Soluble Cobalt (II), Copper (II) and Iron (III) meso-Tetrakis(carboxyl)porphyrin; EUROPEAN JOURNAL OF INORGANIC CHEMISTRY; 2023, 26(3): e202200613; DOI10.1002/ejic.202200613.10. The in vitro metabolism of GMDTC in liver microsomes of human, monkey,dog, rat and mouse: Metabolic stability assessment, metaboliteidentification and interspecies comparison; Journal of Pharmaceutical and Biomedical Analysis; 2023, 236: 1157182023; doi.org/10.1016/j.jpba.2023.115718.11. Synthesis of cobalt A(2)B triaryl corroles bearing methoxy or hydroxyl groups and their activity in electrocatalytic hydrogen evolution; APPLIED ORGANOMETALLIC CHEMISTRY; 2023, 37(1): e6932. DOI10.1002/aoc.6932.12. Non-Metallic Phosphorus Corrole as Efficient Electrocatalyst in Hydrogen Evolution Reaction; CHEMSUSCHEM; 2022, 15(22): e202201553; DOI10.1002/cssc.202201553.13. Photodynamic antitumor activity of Gallium(III) and Phosphorus(V) complexes of trimethoxyl A2B triaryl corrole; BIOORGANIC CHEMISTRY, 2022, 129: 106177; DOI10.1016/j.bioorg.2022.106177.14. FeOy@graphitic carbon core-shell nanoparticles loaded on two dimensional carbon nanosheets with exclusive Fe-Nx moieties for efficient oxygen reduction reaction; JOURNAL OF ELECTROANALYTICAL CHEMISTRY; 2022; 923: 116848; DOI10.1016/j.jelechem.2022.116848.15. Manganese corrole catalyzed selective oxidation of styrene to benzaldehyde: sodium nitrite functions as an oxidant and cocatalyst, ORGANIC & BIOMOLECULAR CHEMISTRY, 2022, 20(39): 7814-7820, DOI10.1039/d2ob01428a.16. Synthesis of Metal Xanthene-Bridged Bis-corroles and their Catalytic Activity in Aerobic Baeyer-Villiger Oxidation Reaction, ASIAN JOURNAL OF ORGANIC CHEMISTRY, 2022, 11(9): e202200349. DOI10.1002/ajoc.202200349.17. Aerobic Baeyer-Villiger Oxidation Catalyzed by Metal Corroles; EUROPEAN JOURNAL OF ORGANIC CHEMISTRY; 2022, 25: e202200462; DOI10.1002/ejoc.202200462.18. Copper Porphyrin Catalyzed C(sp(3))-H Activation via Cross-Dehydrogenative Coupling: Facile Transformation of Aldehydes to Esters, SYNLETT, 2022, 33(1): 1075-1082. DOI10.1055/a-1813-4235.19. Photodynamic Antitumor Activity of 5,15-Bis(perfluorophenyl)-10-(4-carboxyphenyl)corrole and its Gallium(III) and Phosphorus(V) Complexes, CHEMPLUSCHEM, 2022, 87(7): e202200188. DOI10.1002/cplu.202200188.20. Electrocatalytic hydrogen production by CN-substituted cobalt triaryl corroles. CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12(16): 5125-5135. DOI10.1039/d2cy00606e.21. Electrocatalytic hydrogen evolution of a cobalt A(2)B triaryl corrole complex containing -N= PPh3 group, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47(44): 19062-19072. DOI10.1016/j.ijhydene.2022.04.104.22. Synthesis of metal (Ga, Co and Fe) 5,15-bis(pentafluorophenyl)-10-ethox-ycarbonylcorrole and their electrocatalytic hydrogen evolution activity, INORGANIC CHEMISTRY COMMUNICATIONS, 2022, 140: 109453. DOI10.1016/j.inoche.2022.109453.23. Theoretical investigation of Ga-corrole based dyes with different spatial structure for dye-sensitized solar cells, COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2022, 1209:113633.  DOI10.1016/j.comptc.2022.113633.24. Graphene Oxide-based Cobalt Porphyrin Composites for Electrocatalytic Hydrogen Evolution Reaction, CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43(2):20210549. DOI10.7503/cjcu20210549.25. Porous carbon polyhedrons with exclusive Metal-NX moieties for efficient oxygen reduction reaction. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46(80): 39882-39891. DOI10.1016/j.ijhydene.2021.09.244.26. The S-Doped Cobalt Porphyrin-Based Molecular Catalysts with Large Conjugated Meso-Substituents for Enhanced Electrocatalytic Oxygen Reduction and Evolution Reaction, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168(11): 116502. DOI10.1149/1945-7111/ac3273.27. Halogenated Gallium Corroles:DNA Interaction and Photodynamic Antitumor Activity, INORGANIC CHEMISTRY, 2021, 60, 4: 2234. DOI10.1021/acs.inorgchem.0c0301628. Copper porphyrin-catalyzed cross dehydrogenative coupling of alkanes with carboxylic acids: Esterification and decarboxylation dual pathway; TETRAHEDRON, 2021, 96: 132377. DOI10.1016/j.tet.2021.132377.29. A Six Coordinated Phosphorus(V) Corrole Bearing Two Hydroxyl Axial Ligands: X-Ray Structure, DNA Interaction, Photonuclease Activity, and Cytotoxicity towards Tumor Cells; CHEMISTRYSELECT, 2021, 6, 32: 8200. DOI10.1002/slct.202101974.30. Copper Corrole as an Efficient Catalyst for Esterification of Allylic sp(3)-C-H Bonds with Carboxylic Acids. CHINESE JOURNAL OF ORGANIC CHEMISTRY, 2021, 41, 7: 2875. DOI10.6023/cjoc202101023.31. Metal-Free Xanthene-Bridged Bis-Corrole: Synthesis and Efficient Electrocatalytic Hydrogen Evolution. RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2021, 91, 6: 1147. DOI10.1134/S1070363221060256.32. The construction of C(sp(3))-O bond via copper porphyrin catalyzed cross-dehydrogenative coupling reaction: Substituent and electronic effect of the catalysts. SYNTHETIC COMMUNICATIONS, 2021, 51, 13: 2053. DOI10.1080/00397911.2021.1919900.33. Electrocatalytic hydrogen evolution by cobalt triaryl corroles with appended ester and carboxyl on the 10-phenyl group. JOURNAL OF COORDINATION CHEMISTRY, 2021, 74, 9-10: 1414. DOI10.1080/00958972.2021.1920015.34. Copper porphyrin-catalyzed C(sp(2))-O bond construction via coupling phenols with formamides, JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2021, 68, 8: 1541.DOI10.1002/jccs.20210004635. Synthesis of cobalt A(2)B triaryl corroles bearing aldehyde and amide pyridyl groups and their performance in electrocatalytic hydrogen evolution. NEW JOURNAL OF CHEMISTRY, 2021, 45, 11: 5127. DOI10.1039/d0nj04953k

刘海洋