王俊刚
姓名 | 王俊刚 |
教师编号 | 5856 |
性别 | 男 |
学校 | 西北工业大学 |
部门 | 数学与统计学院 |
学位 | 理学博士学位 |
学历 | 博士研究生毕业 |
职称 | 副高 |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
综合介绍 General Introduction 欢迎进入本人的 Github 主页 和 Google 主页。 个人相册 教育教学个人经历 Personal experience 工作经历 教育经历 2018.8-至今 西北工业大学理学院应用数学系 副教授 2013.7-2018.7 西北工业大学理学院应用数学系 讲师 2017.3-2017.4 香港城市大学数学系 Senior Research Associate 2007.7-2010.6 广西师范大学数学科学学院 助教 2010.9-2013.7 兰州大学 计算数学 理学博士 2004.9-2007.7 兰州大学 计算数学 理学硕士 2000.9-2004.7 兰州大学 数学与应用数学 理学学士 荣誉获奖教育教学 Education and teaching 招生信息 教育信息 招收计算数学和应用数学专业的硕士研究生,研究方向包括:1. 偏微分方程的反问题2. 分数阶微分方程的数值算法3. 稀疏优化及其应用 (1)本科生课程:主讲过《高等代数》、《线性代数》、《代数与几何》、《复变函数》、《实变函数》、《常微分方程》、《偏微分方程》、《偏微分方程数值解》、《数学物理方法》、《高等数学》、《计算方法H》。(2)研究生课程:主讲过《泛函分析》、《偏微分方程有限元方法》、《有限元方法的数学理论及应用》、《凸优化算法与应用》、《算法与优化》、《分数阶微分方程》、《数学思维》。 科学研究团队信息 Team Information 在读研究生2023级:陈佳、王鼎2022级:李泽茜、王雨丽2021级:思庆杨、王倩已毕业研究生2018级(2021届): 李露:论文题目:《Helmholtz 方程柯西问题的正则化方法》。 毕业去向:航空学院攻读博士学位。2019级(2022届): 季旻翔:论文题目:《两类热方程反问题的研究》。 毕业去向:华为技术有限公司。 暴军:论文题目:《分数阶扩散方程边界追踪迭代学习算法研究》。 毕业去向:中国工商银行股份有限公司软件开发中心。2020级(2023届): 肖云霞:论文题目:《时空分数阶扩散方程的两类反问题》。 毕业去向:成都华大九天科技有限公司。 杜欣蕊:论文题目:《分数阶Gray-Scott模型两类反问题》。 毕业去向:湖北九同方微电子有限公司。 学术成果科学研究 Scientific Research 主要从事的研究工作包括: 1. 分数阶微分方程的初值、源项、Robin系数、扩散系数的反演。 2. 分数阶微分方程的有限元、有限差分离散方法。 3. 稀疏优化算法及应用。 主持的项目包括: 1. 国家自然科学基金青年基金:时间分数阶扩散方程的扩散系数反演问题研究, 19万 2017/1—2019/12 编号:11601432 在研 2. 陕西省自然科学基础研究计划项目:分数阶扩散方程中扩散系数辨识问题研究,2万 2015.1-2016.12. 编号:2015JQ1021已结题 3.西北工业大学中央高校基本科研业务费科研资助项目:时间分数阶扩散方程中Robin系数和扩散系数的重构,15万 2014.5-2016.5.编号:3102014JCQ01077 已结题 综合介绍学术成果 Academic Achievements [1] Alkhazzan, Abdulwasea, Wang, Jungang, Tun, Cemil, Ding, Xiaoli, Yuan, Zhanbin, and Nie, Yufeng. On Existence and Continuity Results of Solution for Multi-Time Scale Fractional Stochastic Differential Equation. Qualitative Theory of Dynamical Systems 22, no. 2 (June 2023): 49.[2] Wang, Jungang, Si, Qingyang, Bao, Jun, and Wang, Qian. Iterative Learning Algorithms for Boundary Tracing Problems of Nonlinear Fractional Diffusion Equations. Networks and Heterogeneous Media 18, no. 3 (2023).[3] Alkhazzan, Abdulwasea, Wang, Jungang, Nie, Yufeng, and Hattaf, Khalid. A New Stochastic Split-Step θ-Nonstandard Finite Difference Method for the Developed SVIR Epidemic Model with Temporary Immunities and General Incidence Rates. Vaccines 10, no. 10 (October 9, 2022): 1682.[4] Guan, Zhen, Wang, Jungang, Liu, Ying, and Nie, Yufeng. Unconditionally Optimal Convergence of a Linearized Galerkin FEM for the Nonlinear Time-Fractional Mobile/Immobile Transport Equation. Applied Numerical Mathematics 172 (2022): 133–56.[5] Guan, Zhen, Wang, Jungang, and Nie, Yufeng. Unconditionally Optimal Error Estimates of Two Linearized Galerkin FEMs for the Two-Dimensional Nonlinear Fractional Rayleigh–Stokes Problem. Computers & Mathematics with Applications 93 (July 2021): 78–93.[6] Wang, Jilu, Wang, Jungang, and Yin, Lihong. A Single-Step Correction Scheme of Crank–Nicolson Convolution Quadrature for the Subdiffusion Equation. Journal of Scientific Computing 87, no. 1 (March 5, 2021): 26.[7] Zhu, X. G., Nie, Y. F., Ge, Z. H., Yuan, Z. B., and Wang, J. G. A Class of RBFs-Based DQ Methods for the Space-Fractional Diffusion Equations on 3D Irregular Domains. Computational Mechanics 66, no. 1 (July 1, 2020): 221–38.[8] Yang, Zongze, Nie, Yufeng, Yuan, Zhanbin, and Wang, Jungang. Finite Element Methods for Fractional PDEs in Three Dimensions. Applied Mathematics Letters 100 (February 2020): 106041.[9] Zhu, Xiaogang, Nie, Yufeng, Yuan, Zhanbin, Wang, Jungang, and Yang, Zongze. A Galerkin FEM for Riesz Space-Fractional CNLS. Advances in Difference Equations 2019, no. 1 (December 2019): 329.[10] Hu, Jiahui, Wang, Jungang, and Nie, Yufeng. Numerical Algorithms for Multidimensional Time-Fractional Wave Equation of Distributed-Order with a Nonlinear Source Term. Advances in Difference Equations 2018, no. 1 (October 3, 2018): 352.[11] Wang, Jun-Gang, and Ran, Yu-Hong. An Iterative Method for an Inverse Source Problem of Time-Fractional Diffusion Equation. Inverse Problems in Science and Engineering 26, no. 10 (October 3, 2018): 1509–21.[12] Wang, Jun-Gang, Ran, Yu-Hong, and Wang, Dong-Ling. On Structure Preserving and Circulant Preconditioners for the Space Fractional Coupled Nonlinear Schr?dinger Equations: On Structure Preserving and Circulant Preconditioners. Numerical Linear Algebra with Applications 25, no. 4 (August 2018): e2159.[13] Yang, Zongze, Wang, Jungang, Li, Yan, and Nie, Yufeng. Effective Numerical Treatment of Sub-Diffusion Equation with Non-Smooth Solution. International Journal of Computer Mathematics 95, no. 6–7 (July 3, 2018): 1394–1407.[14] Wang, Jun-Gang, Ran, Yu-Hong, and Yuan, Zhan-Bin. Uniqueness and Numerical Scheme for the Robin Coefficient Identification of the Time-Fractional Diffusion Equation. Computers & Mathematics with Applications 75, no. 11 (June 2018): 4107–14.[15] Wang, Jun-Gang, Li, Yan, and Ran, Yu-Hong. Convergence of Chebyshev Type Regularization Method under Morozov Discrepancy Principle. Applied Mathematics Letters 74 (December 2017): 174–80.[16] Ran, Yuhong, Wang, Jungang, and Wang, Dongling. On Partially Inexact HSS Iteration Methods for the Complex Symmetric Linear Systems in Space Fractional CNLS Equations. Journal of Computational and Applied Mathematics 317 (June 2017): 128–36.[17] Ran, Yu-Hong, Wang, Jun-Gang, and Wang, Dong-Ling. On Preconditioners Based on HSS for the Space Fractional CNLS Equations. East Asian Journal on Applied Mathematics 7, no. 1 (February 2017): 70–81.[18] Yang, Z., Yuan, Z., Nie, Y., Wang, J., Zhu, X., and Liu, F. Finite Element Method for Nonlinear Riesz Space Fractional Diffusion Equations on Irregular Domains. Journal of Computational Physics 330 (February 2017): 863–83.[19] Zhu, Xiaogang, Nie, Yufeng, Wang, Jungang, and Yuan, Zhanbin. A Numerical Approach for the Riesz Space-Fractional Fisher’ Equation in Two-Dimensions. International Journal of Computer Mathematics 94, no. 2 (February 2017): 296–315.[20] Zhu, Xiaogang. An Exponential B-Spline Collocation Method for the Fractional Sub-Diffusion Equation. Advances in Difference Equations, 2017, 17.[21] Zhu, Xiaogang, Yuan, Zhanbin, Wang, Jungang, Nie, Yufeng, and Yang, Zongze. FINITE ELEMENT METHOD FOR TIME-SPACE-FRACTIONAL SCHRO¨ DINGER EQUATION. Electronic Journal of Differential Equations, 2017, 18.[22] Wei, Ting, and Wang, Jungang. Determination of Robin Coefficient in a Fractional Diffusion Problem. Applied Mathematical Modelling 40, no. 17–18 (September 2016): 7948–61.[23] Ran, Yu-Hong, and Wang, Jun-Gang. On ADI-like Iteration Method for Fractional Diffusion Equations. Linear Algebra and Its Applications 493 (March 15, 2016): 544–55.[24] Ran, Yu-Hong, Wang, Jun-Gang, and Wang, Dong-Ling. On HSS-like Iteration Method for the Space Fractional Coupled Nonlinear Schr?dinger Equations. Applied Mathematics and Computation 271 (November 15, 2015): 482–88.[25] Wang, Jungang, and Wei, Ting. Quasi-Reversibility Method to Identify a Space-Dependent Source for the Time-Fractional Diffusion Equation. Applied Mathematical Modelling 39, no. 20 (October 2015): 6139–49.[26] Wang, Jun-Gang, Wei, Ting, and Zhou, Yu-Bin. Optimal Error Bound and Simplified Tikhonov Regularization Method for a Backward Problem for the Time-Fractional Diffusion Equation. Journal of Computational and Applied Mathematics 279 (May 2015): 277–92.[27] Wang, Jun-Gang, and Wei, Ting. An Iterative Method for Backward Time-Fractional Diffusion Problem: Backward Time-Fractional Diffusion Problem. Numerical Methods for Partial Differential Equations 30, no. 6 (November 2014): 2029–41.[28] Ran, Yuhong, and Wang, Jungang. On Preconditioned Iterative Methods for Unsteady Incompressible Navier–Stokes Equations. Applied Mathematics and Computation 234 (May 2014): 477–85.[29] Wei, Ting, and Wang, Jungang. A Modified Quasi-Boundary Value Method for an Inverse Source Problem of the Time-Fractional Diffusion Equation. Applied Numerical Mathematics 78 (April 2014): 95–111.[30] Wei, Ting, and Wang, Jun-Gang. A Modified Quasi-Boundary Value Method for the Backward Time-Fractional Diffusion Problem. ESAIM: Mathematical Modelling and Numerical Analysis 48, no. 2 (March 2014): 603–21.[31] Liu, Ji-Chuan, and Wang, Jun-Gang. Cauchy Problem for the Heat Equation in a Bounded Domain Without Initial Value. CMES Comput. Model. Eng. Sci, 2014, 26.[32] Wang, Jungang, Wei, Ting, and Zhou, Yubin. Tikhonov Regularization Method for a Backward Problem for the Time-Fractional Diffusion Equation. Applied Mathematical Modelling 37, no. 18–19 (October 2013): 8518–32.[33] Wang, Jun-Gang, Zhou, Yu-Bin, and Wei, Ting. A Posteriori Regularization Parameter Choice Rule for the Quasi-Boundary Value Method for the Backward Time-Fractional Diffusion Problem. Applied Mathematics Letters 26, no. 7 (July 2013): 741–47.[34] Wang, Jungang, Zhou, Yubin, and Wei, Ting. Two Regularization Methods to Identify a Space-Dependent Source for the Time-Fractional Diffusion Equation. Applied Numerical Mathematics 68 (June 2013): 39–57. |