唐亚宁教师主页|西北工业大学数学与统计学院简历|唐亚宁招生信息|唐亚宁专利信息

教师主页移动版

主页 > 陕西省 > 西北工业大学

唐亚宁

姓名 唐亚宁
教师编号 5696
性别
学校 西北工业大学
部门 数学与统计学院
学位 博士
学历 博士研究生毕业
职称 正高
联系方式 【发送到邮箱】
邮箱 【发送到邮箱】
人气
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳

个人经历 Personal experience 工作经历 教育经历 2020-                   西北工业大学, 教授2010-2011           美国南佛罗里达大学,访问学者2008-2020           西北工业大学, 副教授2002-2008           西北工业大学,讲师2000-2002           西北工业大学,助教 博士:2003-2008,应用数学, 西北工业大学硕士:1997-2000,应用数学, 西北工业大学本科:1993-1997,应用数学, 西北大学

教育教学

教育教学 Education and teaching 教育教学 招生信息 概率论与数理统计专业的教学与科研本科生课程工科《概率论与数理统计》    专业课《试验设计方法》 研究生课程工科研究生《数理统计》      数学专业研究生专业课《高等概率论》 2021级:辛颖,孟婧慧,2020级:张烨彤,王燕,张庆,2019级:梁在军,优秀毕业生2018级:周佳乐,优秀毕业生2017级:马晋莉,主持西北工业大学研究生创意创新种子基金2016级:何春花,主持西北工业大学研究生创意创新种子基金,获国家奖学金,西北工业大学优秀硕士论文2015级:周美玲2014级:陶思巧,关庆,两位同学合作主持西北工业大学研究生创意创新种子基金,陶思巧获国家奖学金,陶思巧硕士毕业论文获得西北工业大学优秀硕士论文2013级:宰维建,主持西北工业大学研究生创意创新种子基金,获得国家奖学金2012级:王蕾,获国家奖学金2011级:陈妍呐2010级:苏朋朋,获国家奖学金

荣誉获奖

科学研究 Scientific Research 研究方向非线性动力系统分岔理论(The bifurcation theory of nonlinear dynamical systems)非线性可积系统(Nonlinear Integrable Systems);孤立子理论(Soliton Theory); 符号计算(Symbolic Computations) 主持科研项目(5) 国家自然科学基金面上项目,2020/01-2023/12,(4) 陕西省自然科学基础研究计划项目,2020.01-2021.12,(3) 陕西省自然科学基础研究计划项目,2017.01-2018.12,(2) 国家自然科学基金青年项目,2013.01-2015.12,(1) 西北工业大学基础研究基金,2011.09-2013.08,

科学研究

学术成果 Academic Achievements [37] Yaning Tang, Zaijun Liang and Jinli Ma, Exact solutions of the (3+1)-dimensional Jimbo-Miwa equation via Wronskian solutions: Soliton, breather, and multiple lump solutions, Physica Scripta,2021 ,96 :095210.[36] Yaning Tang , Jinli Ma, Bingchang Zhou, Jiale Zhou,From 2Mth-order wronskian determinant solutions to Mth-order lump solutions for the (2+1)-Dimensional Kadomtsev–Petviashvili I equation,Wave Motion, 2021, 104:102746.[35] Yaning Tang and Jiale Zhou, Mixed interaction solutions for the coupled nonlinear Schr¨odinger equations, 2021, 35(10): 2150004.[34] Jiale Zhou, Yaning Tang and Linpeng Zhang, Modulation instability and rogue wave spectrum for the generalized nonlinear Schr¨odinger equation,Physica Scripta,  2020, 95:115205.[33] Wen-Xiu Ma, Yi Zhang, and Yaning Tang, Symbolic Computation of Lump Solutions to a Combined Equation Involving Three Types of Nonlinear Terms, 2020, 10( 4):732-745.[32] Yaning Tang, Jinli Ma and Wenxian Xie, Lijun Zhang , Interaction solutions for the (2+1)-dimensional Ito equation, 2019, 33(13):1950167.[31]  Chunhua He ,Yaning Tang, Wen-Xiu Ma, Jinli Ma , Interaction phenomena between a lump and other multi-solitons for the (2+1)-dimensional BLMP and Ito equations, 2019, 95:29–42.[30]  Chunhua He, Yaning Tang , Jinli Ma, New interaction solutions for the (3+1)-dimensional Jimbo–Miwa equation,  Computers and Mathematics with Applications, 2018, 76: 2141-2147.[29] Tang Yaning; He Chunhua; Zhou Meiling, Darboux transformation of a new generalized nonlinear Schrodinger equation: soliton solutions, breather solutions, and rogue wave solutions, Nonlinear Dynamics, 2018, 92 (4):2023-2036.[28] Yaning Tang, Siqiao Tao, Meiling Zhou, Qing Guan, Interaction solutions between lump and other solitons of two classes of nonlinear evolution equations, Nonlinear Dynamics, 2017,89(1): 429-442[27] Yaning Tang, Weijian Zai, Siqiao Tao, Qing Guan, Binary Bell polynomials,Hirota bilinear approach to Levi equation, Applied Mathematics and Computation, 2017, 293(15):565–574.[26] Yaning Tang, Siqiao Tao, Qing Guan, Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations, Computers and Mathematics with Applications, 2016,72(9): 2334-2342.(2017年度ESI热点论文)[25] Yaning Tang, Weijian Zai, New periodic-wave solutions for (2+1)- and (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equations, Nonlinear Dynamics, 2015, 81(1), 249-255. [24] Yaning Tang, Weijian Zai, New exact periodic solitary-wave solutions for the(3+1)-dimensional generalized KP and BKP equations, Computers and Mathematics with Applications, 2015, 70(10) : 2432-2441.[23] Yaning Tang, Lei Wang, Wen-Xiu Ma, Integrable couplings, bi-integrable couplings and their Hamiltonian structures of the Giachetti-Johnson soliton hierarchy, Mathematical Methods in the Applied Sciences, 2015, 38(11), 2305-2315. [22] 唐亚宁,王蕾,一类新的孤子族、可积耦合及其Hamiltonian结构,西北大学学报(自然科学版),2014,44(5)709-714.[21] Lei Wang and Ya-Ning Tang, Tri-Integrable Couplings of the Giachetti-Johnson Soliton Hierarchy as well as Their Hamiltonian Structure ,Abstract and Applied Analysis, 2014(2014), Article ID:627924,8pages[20]Tang yaning, Chenyanna, wanglei, Wronskian and Grammian solutions for the (2+1)-dimensional BKP equation, THEORETICAL&APPLIED MECHANICS LETTERS, 4, 013011(2014).[19] 陈妍呐,唐亚宁,徐伟, 苏朋朋, 用(G’/G)展开法求解非线性偏微分方程精确解. 工程数学学报,2014(3) 361-370.[18] Yaning Tang, Pfaffian solutions and extended Pfaffian solutions to (3+1)-dimensionalJimbo–Miwa equation, Applied Mathematical Modelling, 2013, 37(10-11): 6631–6638[17] Yaning Tang, Junyi Tu, Wen-Xiu Ma, Two new Wronskian conditions for the (3+1)-dimensional Jimbo–Miwa equation,Applied Mathematics and Computation, 218(20)2012, 10050–10055.[16] Yaning Tang, Wen-Xiu Ma, Wei Xu, Liang Gao, Integrable coupling hierarchy and Hamiltonian structure for a matrix spectral problem with arbitrary-order, Communications in Nonlinear Science and Numerical Simulation,17(2) 2012, 585–592. [15] Wen-Xiu Ma, Yi Zhang, Yaning Tang, and JunyiTu, Hirota bilinear equations with linear subspaces of solutions. Applied Mathematics and Computation, 218 (2012) 7174-7183.( 2016,2017, 2018年高被引论文)[14] Tang Ya-ning, Ma Wen-Xiu, and Xu Wei,Grammian and Pfaffian Solutions as well as Pfaffianization for a (3+1) Dimensional Generalized Shallow Water Equation. Chinese Physics B,2012.21(7) 070212. [13] Su peng-peng, Tang Ya-ning, Chen yan-na, Wronskian and Grammian solutions  for (3+1)-dimensional Jimbo- Miwa equation, Chinese Physics B, 2012, 21, (12) 120509.[12] Yaning Tang, Wen-Xiu Ma, Wei Xu, Liang Gao, Wronskian determinant solutions of the (3+1)-dimensional Jimbo-Miwa equation. Applied Mathematics and Computation, 217 (2011) 8722-8730. [11] Yaning Tang, Wei Xu, Jianwei Shen, Liang Gao, Bifurcations of traveling wave solutions for a generalized Sinh-Gordon equation. Communications in Nonlinear Science and Numerical Simulation, 13 (2008) 1048-1055. [10] Yaning Tang, Wei Xu, Jianwei Shen, Liang Gao, Persistence of solitary wave solutions of singularly perturbed Gardner equation. Chaos, Solitons & Fractals, 37 (2008) 532-538. [9] 唐亚宁, 徐伟, 一类广义的四阶非线性Camassa-Holm方程的光滑的与非光滑的行波解。系统科学与数学, 28 (2008) 180-192.[8] Liang Gao, Wei Xu, Jianwei Shen, Yaning Tang, New explicit travelling wave solutions of nonlinearly dispersive Boussinesq equations. Chaos, Solitons & Fractals, 36 (2008) 940-945.[7] Xiaoshan Zhao, HuabingJia, Hongxian Zhou, Yaning Tang, Bifurcations of travelling wave solutions in a non-linear dispersive equation. Chaos, Solitons & Fractals, 37 (2008) 525-531. [6] 唐亚宁, 徐伟, 申建伟, Gardner 方程的孤立波解, 工程数学学报, 24 (2007) 119-127.[5] Yaning Tang, Wei Xu, Liang Gao, Jianwei Shen, An algebraic method with computerized symbolic computation for the one-dimensional generalized BBM equation of any order. Chaos, Solitons & Fractals, 32 ( 2007) 1846-1852. [4] Yaning Tang, Wei Xu, Jianwei Shen, Liang Gao, Bifurcations of traveling wave solutions for Zhiber-Shabat equation. Nonlinear Analysis: Theory, Methods & Applications, 67 (2007) 648-656. [3] Liang Gao, Wei Xu, Yaning Tang, Gao fengMeng, New families of travelling wave solutions for Boussinesq-Burgers equation and (3+1)-dimensional Kadomtsev-Petviashvili equation. Physics Letters A, 366 (2007) 411-421. [2] Wei Xu, Liang Gao, Yaning Tang, Jianwei Shen, A series of explicit and exact travelling wave solutions of the B(m, n) equations. Applied Mathematics and Computation, 185 (2007) 748-754. [1] 唐亚宁, 徐伟, 推广的BBM方程行波解. 西北大学学报(自然科学版), 36 (2006) 525-528.

学术成果

综合介绍 General Introduction 曾获“陕西省高等教育教学成果特等奖(2019)”,“西北工业大学研究生最满意教师(2019)”,首届全国高校数学微课程教学设计竞赛西北赛区二等奖(2015)”。“西北工业大学优秀班主任(2017)”,西北工业大学“三育人”奖(2004),理学院“优秀教师”奖(2004),独立编著教辅1本。主持了西北工业大学“课程思政”示范课程项目(2020),参与建设了陕西省一流本科课程(2020)。指导本科生毕业设计获西北工业大学优秀毕业设计1项。指导本科生参加数学建模竞赛,获美国大学生数学建模竞赛Outstanding特等奖1项,一等奖4项,国际二等奖10多项;获全国大学生数学建模竞赛国家二等奖3项;指导研究生参加全国数学建模竞赛,获国家一等奖1项,国家二等奖1项等。研究方向为可积系统,孤立子理论,怪波理论,非线性发展方程精确解及其动力学的研究。先后主持国家级和陕西省科研项目4项,获陕西省自然科学奖二等奖1项(2020)。发表高水平科研论文将近40篇,他引500多次,1篇论文连续3 次进入 ESI 热点论文并入选高被引论文。 个人相册

综合介绍

杨永