郝永存
姓名 | 郝永存 |
性别 | 男 |
学校 | 西北工业大学 |
部门 | 机电学院 |
学位 | 工学博士学位 |
学历 | 博士研究生毕业 |
职称 | 副高 |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
综合介绍 General Introduction 郝永存,副研究员,硕士生导师。2018年入职 西北工业大学 机电学院,现任 空天微纳系统教育部重点实验室 副主任。从事MEMS传感技术研究,承担国家自然科学基金、国家级军口重点项目课题、陕西省自然科学基金等项目7项。获陕西省科学技术一等奖1项,陕西高等学校科学技术一等奖1项等奖励,发表学术论文30余篇,其中SCI论文20余篇,授权国家发明专利10余项。 个人相册 教育教学教育教学 Education and teaching 招生信息 招生年度 招生学院 招生专业 荣誉获奖获奖信息 The winning information 2021年获 陕西高等学校科学技术奖 一等奖 “仿秦岭箭竹叶微纳复合结构疏冰机理研究”2017年获 陕西省科学技术奖 一等奖 “高精度硅微机械陀螺及其工程化技术”2016年获 陕西省国防科学进步奖励 一等奖 科学研究团队信息
Team Information
2023.10 登高赏秋,子午峪-黄峪寺-白石峪 短程穿越,吃上了铁锅炖鸡,收获了柿子、山楂。2023.04 集体踏青登顶秦岭十二印象之分水岭高山草甸。2023.03 王成刚同学获2023届研究生优秀毕业生称号。2022.11 王成刚同学获2022年研究生国家奖学金。2022.09 欢迎李奕凡、钱进两位同学加入课题组。2022.03 课题组论文被SCI期刊 学术成果科学研究
Scientific Research
从事微机电系统(MEMS)传感器相关技术研究,研究内容主要包括微型传感器设计、制造和测控技术。主持项目7项,科研经费充足。主持项目:7、航天772所高校专项科研计划,<基于AD7745的差分电容式MEMS加速度计结构设计>,30万,2021.06-2023.056、国家级军口重点项目课题,<电场传感机理与应用>,630万元,2020.11-2024.115、某研究院横向课题,<加速度表建模及多物理场仿真>,16.5万元,2020.09-2021.104、宁波市自然科学基金, 综合介绍学术成果 Academic Achievements 期刊论文(*通讯作者)29. Hao Y.*, Wang Y., Liu Y., et al. (2024). An SOI-based post-fabrication process for compliant MEMS devices. Journal of Micromechanics and Microengineering, 34(4): 045005.28. Hui, Z., Hao, Y.*, Zhang, Z., et al. (2024). Mode-Localized Z-Axis Accelerometer. IEEE Sensors Journal. (Online)27. Zhang, Z., Zhang, H., Hao, Y.*, et al. (2024). A Review on MEMS Silicon Resonant Accelerometers. Journal of Microelectromechanical Systems. (Online)26. Li, E., Jian, J., ..., Hao, Y., et al. (2024). Characterization of Sensitivity of Time Domain MEMS Accelerometer. Micromachines, 15(2), 227.25. Li, E., Zhang, L., ..., Hao, Y., et al. (2023). Novel acceleration measurement method during attenuation vibration of inertial sensor based on time domain sensing mechanism. Measurement, 218, 113077.24. Li H., Zhang Z., ..., Hao Y., et al. (2022). Micromechanical mode-localized electric current sensor. Microsystems & Nanoengineering, 8(1), 1-10.23. Wang C., Hao Y.*, Sun Z., et al. (2022). Design of a Capacitive MEMS Accelerometer with Softened Beams. Micromachines, 13(3), 459.22. Zu L., Hao Y.*, Wang M., et al. (2022). A Novel Mode-Localized Accelerometer Employing a Tunable Annular Coupler. IEEE Sensors Journal. Accepted.21. Hao Y., Wang C., Sun Z., et al. (2022). A Mode-localized DC Electric Field Sensor. Sensors and Actuators A: Physical, 333,113244.20. Zhang P., Li Y., ..., Hao Y., et al. (2021) . A MEMS Inertial Switch With Large Scale Bi-Directional Adjustable Threshold Function. Journal of Microelectromechanical Systems, 99, 1–10. 19. Hao Y.*, Wang C., Sun Z., et al. (2021). Rotatory microgripper based on a linear electrostatic driving scheme. Microelectronic Engineering, 248, 111601.18. Dong Z., Yan S., ..., Hao Y., et al. (2021). Single Living Cell Analysis Nanoplatform for High-Throughput Interrogation of Gene Mutation and Cellular Behavior. Nano Letters, 21(11), 4878–4886. 17. Hao Y., Liang J., Kang H., et al. (2020). A Micromechanical Mode-Localized Voltmeter. IEEE Sensors Journal, 21(4), 4325–4332. 16. Kang H., Ruan B., Hao Y., et al. (2020). Mode-localized accelerometer with ultrahigh sensitivity. Science China Information Sciences, 65(4), 142402. 15. Kang H., Ruan B., Hao Y.*, et al. (2020). A Mode-Localized Resonant Accelerometer With Self-Temperature Drift Suppression. IEEE Sensors Journal, 20(20), 12154–12165. 14. Dong Z., Jiao Y., ..., Hao Y., et al. (2020). On-chip multiplexed single-cell patterning and controllable intracellular delivery. Microsystems & Nanoengineering, 6(1), 2. 13. Kang H., Ruan B., Hao Y., et al. (2020). A Micromachined Electrometer With Room Temperature Resolution of 0.256 e/√Hz. IEEE Sensors Journal, 20(1), 95–101. 12. Li E., Shen Q., Hao Y., et al. (2019). A Virtual Accelerometer Array Using One Device Based on Time Domain Measurement. IEEE Sensors Journal, 19(15), 6067–6075. 11. Xie J.*, Hao Y., Yuan W. (2019). Energy Loss in a MEMS Disk Resonator Gyroscope. Micromachines, 10(8), 493. 10. Hao Y., Xie J., Yuan W., et al. (2016). Dicing‐free SOI process based on wet release technology. Micro & Nano Letters, 11(11), 775–778. 09. Hao Y., Yuan W., Xie J., et al. (2016). Design and Verification of a Structure for Isolating Packaging Stress in SOI MEMS Devices. IEEE Sensors Journal, 17(5), 1246–1254.08. Shen Q., Li H., Hao Y., et al. (2016). Bias Contribution Modeling for a Symmetrical Micromachined Coriolis Vibratory Gyroscope. IEEE Sensors Journal, 16(3), 723–733.07. Yuan G., Yuan W., Hao Y., et al. (2015). A Microgripper with a Post-Assembly Self-Locking Mechanism. Sensors, 15(8), 20140–20151.06. Zhang H., Yuan W., Hao Y., et al. (2015). Influences of the Feedthrough Capacitance on the Frequency Synchronization of the Weakly Coupled Resonators. IEEE Sensors Journal, 15(11), 6081–6088.05. Hao Y., Yuan W., Zhang H., et al. (2015). A rotary microgripper with locking function via a ratchet mechanism. Journal of Micromechanics and Microengineering, 26(1), 015008.04. Xie J.*, Shen Q., Hao Y., et al. (2015). Design, fabrication and characterization of a low-noise Z-axis micromachined gyroscope. Microsystem Technologies, 21(3), 625–630.03. He Y., Jiang C., ..., Hao Y., et al. (2014). Ice Shear Fracture on Nanowires with Different Wetting States. ACS Applied Materials & Interfaces, 6(20), 18063–18071.02. Xie J.*, Hao Y., Shen Q., et al. (2013). A dicing-free SOI process for MEMS devices based on the lag effect. Journal of Micromechanics and Microengineering, 23(12), 125033.01. Xie J.*, Hao Y., Chang H., et al. (2013). Single Mask Selective Release Process for Complex SOI MEMS Device. Key Engineering Materials, 562–565, 1116–1121. 会议论文11. Ruan B., Hao Y., Kang H., et al. (2020). A Mode-localized Tilt Sensor with Resolution of 2.4e-5 Degrees within the Range of 50 Degrees. IEEE INERTIAL 2020, 1–4. 10. Li W., Ye F., ..., Hao Y., et al. (2020). A Mode-Localized Magnetometer with Resolution of 6.9 nT/√Hz Within the Range of 100 mT. IEEE MEMS 2020, 190–193. 09. Yan Z., Hao Y., Li W., et al. (2019). A Mode-Localized Lorentz Force Magnetometer with 1.6 μT/√Hz Resolution. TRANSDUCERS 2019, 1815–1818.08. Liang J., Hao Y., Kang H., et al. (2019). A Mode-Localized Voltmeter with Resolution of 46.8 Nanovolts. TRANSDUCERS 2019, 226–229. 07. Yan Z., Liang J., Hao Y., et al. (2019). A Micro Resonant DC Electric Field Sensor Based on Mode Localization Phenomenon. IEEE MEMS 2019, 849–852. 06. Li E., Shen Q., Hao Y., et al. (2018). A Novel Virtual Accelerometer Array Using One Single Device Based on Time Intervals Measurement. IEEE SENSORS 2018, 1–4. 05. Hao Y., Yuan W., Xie J., et al. (2016). A Novel Packaging Stress Isolation Structure for SOI Based MEMS Gyroscopes. IEEE SENSORS 2016, 1–3. 04. Zhang H, Yuan W, ..., Hao Y., et al. (2015). A Novel Resonant Accelerometer Based on Mode Localization of Weakly Coupled Resonators. TRANSDUCERS 2015, 1073–1076. 03. Hao Y., Yuan W., Zhang H., et al. (2015). A Microgripper with a Ratchet Self-Locking Mechanism. IEEE MEMS 2015, 1106–1109.02. Shen Q., Yuan W., ..., Hao Y., et al. (2013). A Fully Decoupled Design Method for MEMS Microthruster based on Orthogonal Analysis. TRANSDUCERS 2013, 2353–2356. 01. Chang H.*, Zhao H., ..., Hao Y., et al. (2012). Design and fabrication of a rotary comb-actuated microgripper with high driving efficiency. IEEE MEMS 2012, 1, 1145–1148. 书籍章节01. Chang H.*, Hao Y. (2018). A Rotary Microgripper. Micro Electro Mechanical Systems. 997–1015. 发明专利09. 常洪龙,李 涵,郝永存,一种基于模态局部化效应的双路信号传感器,2022.04.25,中国,CN114993458A(发明公布)08. 常洪龙,李 涵,郝永存,一种基于模态局部化效应的MEMS电流传感器,2022.01.12,中国,CN114441831A(发明公布)07. 郝永存,王延龙,苑伟政,常洪龙,一种MEMS微型电流传感器,2022.01.12,中国,CN114563611A(发明公布)06. 郝永存,祖陆晗,常洪龙,一种适用于MEMS模态局部化传感器的环状耦合系统,2021.10.23,中国,CN114217093A(发明公布)05. 郝永存,常洪龙,苑伟政,一种MEMS器件的刚度调节方法,2020.04.22,中国,CN111498792A(发明公布)04. 郝永存,张钊,苑伟政,常洪龙,一种MEMS线性静电驱动技术,2019.12.06,中国,ZL20191123825003. 苑伟政,郝永存,谢建兵,常洪龙,一种SOI基微惯性传感器封装应力隔离方法,2016.10.21,中国,ZL201610919522.002. 苑伟政,郝永存,李小平,申强,电阻置顶型微推进器及其制备方法,2013.06.04,中国,ZL201310219043.401. 谢建兵,郝永存,常洪龙,申强,苑伟政,微型半球谐振陀螺及其制备方法,2013.1.21,中国,ZL201310022146.1 |