冉晨鑫
姓名 | 冉晨鑫 |
教师编号 | 4567 |
性别 | 男 |
学校 | 西北工业大学 |
部门 | 柔性电子研究院 |
学位 | 工学博士学位 |
学历 | 博士研究生毕业 |
职称 | 副高 |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
综合介绍 General Introduction 冉晨鑫,西北工业大学柔性电子研究院副教授。长期从事新型能源材料的开发、材料光化学、光物理特性调控机制研究,在有机/无机杂化钙钛矿太阳电池方向进行了系统研究。近年来,申请人在离子液体溶剂开发、钙钛矿大面积成膜工艺开发、薄膜微结构与光电特性调控和太阳电池器件稳定性优化等研究方向取得了突出成绩。近五年,以第一/通讯作者在Chemical Society Review,Joule,Advanced Materials,Advanced Energy Materials,ACS Energy Letters,Advanced Functional Materials等国际顶级学术期刊发表论文26篇,其中ESI高被引论文6篇,ESI热点论文1篇。论文总被引4500余次,H因子35。主持和参与国家级、省部级项目10项,申请钙钛矿光伏器件方向发明专利10余项,其中授权发明专利6项。 个人相册 教育教学个人经历 personal experience 工作经历 教育经历 2020.05-至今 西北工业大学,柔性电子研究院,副教授2017.05-2020.05 西安交通大学,电信学部,讲师2016.09-2020.05 西安交通大学,电信学部,博士后,合作导师:吴朝新教授 2012.03-2016.09 西安交通大学,电信学部,博士,导师:汪敏强教授2014.11-2015.11 美国凯斯西储大学,大分子科学与工程系,国家公派联合培养博士,导师: Prof. Liming Dai2009.09-2012.02 西安交通大学,理学院,硕博连读硕士阶段2005.09-2009.07 西安电子科技大学,理学院,学士 荣誉获奖教育教学 Education and teaching 招生信息 教育信息 课题组经费充足,欢迎校内外具有化学、材料、物理、微电子等相关专业背景的本科生、硕士生、博士生加盟! 本科生课程:1. 半导体物理FE,秋季学期2. 柔性能源转换材料,夏季学期3. 柔性光电材料与器件概论,秋季学期研究生课程:1. 高等半导体物理,春季学期2. 柔性太阳能电池材料与技术,秋季学期3. 纳米光电材料与技术,春季学期4. 现代柔性材料表征与技术,春季学期 科学研究科学研究 Scientific Research 长期从事新型能源材料的开发、材料光化学、光物理特性调控机制研究,在有机/无机杂化钙钛矿太阳能电池方向进行了系统研究。针对钙钛矿活性层可控制备和界面有效调控的关键科学问题,开展高效稳定光电转换器件的研究,研究方向属于化学、物理、材料、能源的交叉领域。承担项目1. 国家自然科学基金面上项目,2024/01-2027/12,主持2. 国家自然科学基金青年项目,2019/01-2021/12,主持3. 陕西省自然科学基金青年项目,2023/01-2024/12,主持4. 基础研究创新能力专项-青年人才项目,2023/04-2025/03,主持5. 中央高校新进教师科研启动费,2020/05-2023/04,主持6. 中国博士后基金面上项目,2022/11-2024/10,主持7. 中国博士后基金面上项目,2018/06-2020/05,主持8. 企业横向课题,2022/01-2023/12,主持9. 陕煤“秦岭”基础科学研究计划项目,2023/01-2024/12,核心骨干10. 西工大-陕煤校企联合重点项目,2021/01-2023/12,核心骨干 学术成果学术成果 Academic Achievements Publications after join NWPU (+Co-first author; *Corresponding author)[26] C. Chen, C. Ran,* C. Guo, Q. Yao, J. Wang, T. Niu, D. Li, L. Chao, Y. Xia,* Y. Chen,* Fully Screen-Printed Perovskite Solar Cells with 17% Efficiency via Tailoring Confined Perovskite Crystallization within Mesoporous Layer, Adv. Energy Mater., 2023, 13, 2302654.[25] C. Chen, C. Ran,* Q. Yao, J. Wang, C. Guo, L. Gu, H. Han, X. Wang, L. Chao, Y. Xia,* Y. Chen,* Screen-Printing Technology for Scale Manufacturing of Perovskite Solar Cells, Adv. Sci., 2023, 10, 2303992.[24] Y. Liu, W. Gao,* G. Xing, S. Lv, X. Zhao, J. Yang, L. Chao, Z. Wu, Y. Xia,* C. Ran,* Tailoring Tensile Strain in Pb-Sn Perovskite Film for Efficient and Stable Narrow-Bandgap Perovskite Solar Cells, Solar RRL, 2023, 7, 2300575.[23] C. Ran,* W. Li, H. Dong, Y. Zhou, W. Gao,* Z. Wu,* Seeking for Cost-Effective Tin Iodide Source Towards Efficient Lead-Free Tin Triiodide Perovskite Solar Cells: Advances and Prospects, ACS Appl. Energy Mater., 2023, 6, 5102-5112.[22] C. Ran,* X. Liu, W. Gao,* M. Li, Z. Wu, Y. Xia,* Y. Chen, Healing aged metal halide perovskites toward robust optoelectronic devices: Mechanisms, strategies, and perspectives, Nano Energy, 2023, 108, 108219.[21] H. Dong, C. Ran,* W. Gao, Mingjie Li, Y. Xia,* W. Huang,* Metal Halide Pervoskites for next-generation optoelectronics: Progresses and prospects, eLight, 2023, 3, 3. [20] S. Lv, W. Gao, G. Xing, L. Chao, L. Song, M. Li, L. Fu,* Y. Chen,* C. Ran,* Improving the Air Resistance of the Precursor Solution for Ambient-Air Coating of an Sn-Pb Perovskite Film with Superior Photovoltaic Performance, ACS Appl. Mater. & Interfaces, 2022, 14, 43362-43371.[19] H. Dong, C. Ran,*+ W. Li, X. Liu, W. Gao, Y. Xia,* Y. Chen, W. Huang,* Reductive Ionic Liquid-Mediated Crystallization for Enhanced Photovoltaic Performance of Sn-Based Perovskite Solar Cells, Sci. China Chem., 2022, 65, 1895-1920.[18] W. Gao, L. Chao, M. Li, Y. Xia,* C. Ran,* Y. Chen, Ternary Halogen Doping for Efficient and Stable Air-Processed All-Inorganic Pervoskite Solar Cells, Solar RRL, 2022, 6, 2200457.[17] W. Gao, H. Dong, N. Sun, L. Chao, W. Hui, Q. Wei, H. Li, Y. Xia, X. Gao, G. Xing, Z. Wu, L. Song, P. Muller-Buschbaum, C. Ran,* Y. Chen,* Chiral cation promoted interficial charge extraction for efficient tin-based perovskite solar cells, J. Energy Chem., 2022, 68, 789-796.[16] N. Sun, W. Gao*, H. Dong, X. Liu, L. Chao, W. Hui, Y. Xia,* C. Ran,* Y. Chen, Bi-Linable Reductive Cation as Molecular Glue for One Year Stable Sn-Based Perovskite Solar Cells, ACS Appl. Energy Mater., 2022, 5, 4008-4016.[15] L. Gu+, C. Ran+, L. Chao, Y. Bao, W. Hui, Y. Wang, Y. Chen,* X. Gao, L. Song,* Designing Ionic Liquids as the Solvent for Efficient and Stable Perovskite Solar Cells, ACS Appl. Mater. Interfaces, 2022, 14, 22870-22878.[14] H. Dong, C. Ran,*+ W. Gao, N. Sun, X. Liu, Y. Xia,* Y. Chen,* W. Huang,* Crystallization Dynamics of Sn-Based Perovskite Thin Films: Toward Efficient and Stable Photovoltaic Devices, Adv. Energy Mater., 2022, 12, 2102213.[13] N. Guan, C. Ran,* Y. Wang, L. Chao, Z. Deng, G. Wu, H. Dong, Y. Bao, Z. Lin,* L. Song,* SnO2 Passivation and Enhanced Perovskite Charge Extraction with a Benzylamine Hydrochloric Interlayer, ACS Appl. Mater. Interfaces, 2022, 14, 34198-34207.[12] C. Ran,* Y. Wang, W. Gao, Y. Xia,* Y. Chen,* W. Huang,* Lead Sources in Perovskite Solar Cells: Toward Controllable, Sustainable, and Large-scalable Production, Solar RRL, 2021, 5, 2100665.[11] Y. Lin, J. Liu, J. Hu, C. Ran,* Y. Chen, G. Xing,* Y. Xia,* Y. Chen, In Situ Interfacial Passivation of Sn-Based Perovskite Films with a Bi-functional Ionic Salt for Enhanced Photovoltaic Performance, ACS Appl. Mater. Interfaces, 2021, 13, 58809-58817.[10] J. Liu, Y. Chen, C. Ran,* J. Hu, Y. Lin, Y. Xia,* Y. Chen,* Unraveling the Role of Chloride in Vertical Growth of Low-Dimensional Ruddlesden-Popper Perovskites for Efficient Perovskite Solar Cells, ACS Appl. Mater. Interfaces, 2021, 2022, 14, 34189-34197.[9] S. Lv, W. Gao, C. Ran,* D. Li, L. Chao, X. Wang, L. Song, Z. Lin,* L. Fu,* Y. Chen,* Antisolvent-Free Fabrication of Efficient and Stable Sn-Pb Perovskite Solar Cells, Solar RRL, 2021, 5, 2100675.[8] N. Sun, W. Gao*, H. Dong, Y. Liu, X. Liu, Z. Wu, L. Song, C. Ran,* Y. Chen,* Architecture of p-i-n Sn-Based Perovskite Solar Cells: Characteristics, Advances and Perspectives, ACS Energy Lett., 2021, 6, 2863-2875.[7] S. Lv, W. Gao, Y. Liu, H. Dong, N. Sun, T. Niu, Y. Xia*, Z. Wu, L. Song, C. Ran*, L. Fu*, Y. Chen*,Stability of Sn-Pb Mixed Organic-Inorganic Halide Perovskite Solar Cells: Progress, Challenges, and Perspectives, J. Energy Chem., 2022, 65, 371-404.[6] T. Niu, L. Chao, W. Gao, C. Ran*, L Song*, Y. Chen*, L. Fu, W. Huang, Ionic Liquids-Enabled Efficient and Stable Perovskite Photovoltaics: Progress and Challenges, ACS Energy Lett., 2021, 6, 1453-1479. (ESI highly cited paper)[5] L. Gu, D. Li, L.Chao, H. Dong, W. Hui, T. Niu, C. Ran*, Y. Xia, L. Song, Y. Chen*, W. Huang,Strain Engineering of Metal Halide Perovskites Towards Efficient Photovoltaics: Advances and Perspectives, Solar RRL, 2021, 5, 2000672.[4] L, Chao, T. Niu, W. Gao, C. Ran,* L. Song, Y. Chen,* W. Huang*, Solvent Engineering of Precursor Solution toward Lrage-Area Production of Perovskite Solar Cells, Adv. Mater., 2021, 33, 2005410. (ESI highly cited paper)[3] X. Wang, Y. Wang, W. Gao, L. Song, C. Ran,* Y. Chen,* W. Huang*, Polarization-Sensitive Halide Perovskites for Polarized Luminescence and Detection: Recent Advances and Perspectives, Adv. Mater., 2021, 33, 2003615.[2] Y. Liu, W. Gao, C. Ran,* H. Dong, N. Sun, X. Ran, Y. Xia, L. Song, Y. Chen,* W. Huang*, All Inorganic Sn-Based Perovskite Solar Cells: Status, Challenges, and Perspectives, ChemSusChem, 2020, 13, 6477-6497.[1] W. Gao, C. Chen, C. Ran,* H. Zheng, H. Dong, Y. Xia, Y. Chen,* W. Huang*, A-Site Cation Engineering of Metal Halide Perovskites: Version 3.0 of Efficient Tin-Based Lead-Free Perovskite Solar Cells, Adv. Funct. Mater., 2020, 30, 2000794.Featured publications before join NWPU (+Co-first author; *Corresponding author)[1] C. Ran, W. Gao, J. Li, J. Xi, L. Li, J. Dai, Y. Yang, X. Gao, H. Dong, B. Jiao, L. Spanopoulos, C. D. Malliakas, X. Hou, M. G. Kanatzidis*, Z. Wu*, Conjugated Organic Cations Enable Efficient Self-Healing FASnI3 Solar Cells. Joule, 2019, 3, 3072-3087. (ESI highly cited paper; ESI hot paper)[2] C. Ran*, W. Gao, N. Li, Y. Xia, Q. Li, Z. Wu, H. Zhou*, Y. Chen*, M. Wang, W. Huang, Facet-Dependent Control of PbI2 Colloids for over 20% Efficient Perovskite Solar Cells. ACS Energy Lett., 2019, 4, 358–367.[3] C. Ran, J. Xu*, W. Gao, C. Huang, S. X. Dou, Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering, Chem. Soc. Rev., 2018, 47, 4581–4610. (ESI highly cited paper)[4] C. Ran, J. Xi, W. Gao, F. Yuan, T. Lei, B. Jiao, X. Hou, Z. Wu*, Bilateral Interface Engineering toward Efficient 2D-3D Bulk Heterojunction Tin Halide Lead-Free Perovskite Solar Cells, ACS Energy Lett., 2018, 3, 713–721. (ESI highly cited paper)[5] C. Ran, Z. Wu*, J. Xi, F. Yuan, H. Dong, T. Lei, X. He, X. Hou, Construction of Compact Methylammonium Bismuth Iodide Film Promoting Lead-Free Inverted Planar Heterojunction Organohalide Solar Cells with Open-Circuit Voltage over 0.8 V, J. Phys. Chem. Lett., 2017, 8, 394–400. (ESI highly cited paper)[6] C. Ran, Y. Chen, W. Gao, M. Wang*, L. Dai*, One-dimensional (1D) [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanorods as an efficient additive for improving the efficiency and stability of perovskite solar cells, J. Mater. Chem. A, 2016, 4, 8566–8572.[7] C. Ran, M. Wang, W*. Gao, Z. Yang, J. Shao, J. Deng, X. Song, A general route to enhance the fluorescence of graphene quantum dots by Ag nanoparticles, RSC Adv., 2014, 4, 21772–21776.[8] C. Ran, M. Wang*, W. Gao, Z. Yang, J. Deng, J. Ding, X. Song, Employing the plasmonic effect of the Ag–graphene composite for enhancing light harvesting and photoluminescence quenching efficiency of poly[2-methoxy-5-(2-ethylhexyloxy)- 1,4-phenylene-vinylene], Phys. Chem. Chem. Phys., 2014, 16, 4561–4568.[9] C. Ran, M. Wang*, W. Gao, J. Ding, Y. Shi, X. Song, H. Chen, Z. Ren, Study on Photoluminescence Quenching and Photostability Enhancement of MEH-PPV by Reduced Graphene Oxide, J. Phys. Chem. C, 2012, 116, 23053–23060.[10] W. Gao, C. Ran, J. Xi, B. Jiao, W. Zhang, M. Wu, X. Hou, Z. Wu*, High-Quality Cs2AgBiBr6 Double Perovskite Film for Lead-Free Inverted Planar Heterojunction Solar Cells with 2.2% Efficiency, ChemPhysChem, 2018, 19, 1696–1700. (ESI highly cited paper)[11] Y. Xia+, C. Ran+, Y. Chen*, Q. Li, N. Jiang, C. Li, Y. Pan, T. Li, J. P. Wang, W. Huang, Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells, J. Mater. Chem. A, 2017, 5, 3193–3202.[12] W. Gao+, C. Ran+, M. Wang*, L. Li, Z. Sun, X. Yao, The role of reduction extent of graphene oxide in the photocatalytic performance of Ag/AgX (X = Cl, Br)/rGO composites and the pseudo-second-order kinetics reaction nature of the Ag/AgBr system, Phys. Chem. Chem. Phys., 2016, 18, 18219–18226.[13] W. Gao, C. Ran, J. Li, H. Dong, B. Jiao, L. Zhang, X. Lan, X. Hou, Z. Wu*, Robust Stability of Efficient Lead-Free Formamidinium Tin Iodide Perovskite Solar Cells Realized by Structural Regulation, J. Phys. Chem. Lett., 2018, 9, 6999–7006. 综合介绍 |