瞿永泉教师主页|西北工业大学化学与化工学院简历|瞿永泉招生信息|瞿永泉专利信息

教师主页移动版

主页 > 陕西省 > 西北工业大学

瞿永泉

姓名 瞿永泉
教师编号 4455
性别
学校 西北工业大学
部门 化学与化工学院
学位 哲学博士学位
学历 博士研究生毕业
职称 正高
联系方式 【发送到邮箱】
邮箱 【发送到邮箱】
人气
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳

个人经历 personal experience 工作经历 教育经历 2021年01月-至今   西北工业大学化学化工学院,教授2012年02月-2020年12月   西安交通大学前沿科学技术研究院,教授2009年02月-2012年02月   加州大学洛杉矶分校,博士后 2004年10月-2009年01月   加州大学戴维斯分校,博士2001年09月-2004年06月   中科院大连化物所,硕士1997年10月-2001年06月   南京大学材料科学与工程系,学士

教育教学

教育教学 Education and teaching 招生信息 多相催化,电合成与生物仿生催化Ideal scenario for heterogeneous catalysis with several possible products is to solely proceed to a single product with high efficiency and stability. However, rare cases can achieve this purpose. Typically, a heterogeneous catalytic reaction involves several elementary steps on solid surface, which can sequentially and/or parallelly happen in the aspects of thermodynamics and kinetics of every individual step and therefrom lead to a poor selectivity. Natural enzymes show a high selectivity due to the specific adsorption configuration of substrates on the enzymic active sites with the aid of their unique 3D structures. Thus, the precise recognitions and adjustments of the adsorption events of substrates on active centers become important, which can provide a solution to fundamentally understand catalytic mechanism and practically improve the catalytic selectivity, activity and durability. Through the approach of “regulations on surface properties-construction of novel active sites-breaking the competitive adsorption-assistants from in-situ experiments and theoretical calculation”, our research focus on the design and synthesis of heterogeneous catalysts for specific reactions as well as recognitions of catalytic mechanism.

荣誉获奖

荣誉获奖 Awards Information 1. 2012年,国家级青年人才项目2. 2012年,陕西省百人计划3. 2017年,唐仲英基金会“仲英”青年学者4. 2019年,陕西省优秀博士论文指导教师5. 2020年,陕西高等学校科学技术奖,稀土二氧化铈催化体系的机理研究及应用,一等奖6. 2020年,陕西省优秀博士论文指导教师7. 2022年,纳米研究青年科学家奖,Nano Research Young Innovators (NR45) Awards8. 2023年,中国稀土学会稀土科学技术奖,二氧化铈表面缺陷化学与催化作用,二等奖9.2023年,陕西高等学校科学技术奖,高性能电解水制氢电极催化剂的设计,一等奖

科学研究

学术成果 Academic Achievements 部分代表性工作:56. Li JY, Ma Y Ho JC, and Qu Y*, Hydrogen spillover phenomenon at the interface of metal-supported electrocatalysts for hydrogen evolution, Accounts of Chemical Research (Invited), 2024, In Press.55. Tan Q#, Lin S#, Li YF#, Jiang Z*, Ma Y, Qu Y* and Li J*, Tandem electrocatalytic alkyne semi-hydrogenation over bicomponent catalysts, Angewandte Chemie International Edition, 2024, 63, e202400483.54. Zhai WF, Chen Y, Liu YD, Ma Y, Vijayakumar P, Qin Y, Qu Y* and Dai ZF*, Covalently bonded Ni sites in black phosphorene with electron redistribution for efficient metal-lightweighted water electrolysis, Nano-Micro Letters, 2024, 16, 115.53. Ma SZ#, Tian ZM#, Liu L#, Zhu J#, Zhao SJ, Zhu JF, Wang WC, Jiang RM, Qu Y*, Lei J*, Zhao JL* and Jiang T*, Cold to hot: tumor immunotherapy by promoting vascular normalization based on PDGFB nanocompsoites, Small, 2024, 20, 2308638.52. Chen D, Xia ZM, Guo ZX, Gou WY, Zhao JL, Zhou XM, Tan XH, Li WB, Zhao SJ, Tian ZM* and Qu Y*, Bioinspired three-coordinated single-atom porous Fe nanozyme for glutathione detection, Nature Communications, 2023, 14, 7127.51. Guo ZX, Tian ZM* and Qu Y*, One-step reagentless colorimetric analysis platform of biomineralized Ce-UiO-66 for universal detection of biomarkers, Sensors and Actuators B: Chemical, 2023, 397, 134705.50. Liu YX, Zou Y, Wang Y, Zhang S* and Qu Y*, Strong metal-support interactions between Pt and CeO2 for efficient methanol decomposition, Chemical Engineering Journal, 2023, 475, 14621949. Zou Y, Liu YX, Zhang S* and Qu Y*, Dual active sites of Co and oxygen vacancy in Co-doped CeO2 for tandem oxidative transformation of toluene and malononitrile into benzylidenemalononitrile, Green Chemistry, 2023, 25, 7673-7681. 48. Zhai WF, Chen Y, Liu YD, Sakthivel T, Ma Y, Guo SW, Qu Y* and Dai ZF*, Enlarging the Ni-O bond polarizability in phosphorene-hosted metal-organic framework for boosted water oxidation electrocatalysis, ACS Nano, 2023, 17, 17254-17264.47. Li WB#, Gan J#, Liu YX, Zou Y, Zhang S* and Qu Y*, Platinum and frustrated Lewis pairs on ceria as dual-active sites for efficient reverse water-gas shift reaction at low temperatures, Angewandte Chemie International Edition, 2023, 62, e202305661.46. Tan XH, Zhang MK, Chen D, Li WB, Gou WY*, Qu Y* and Ma Y*, Electrochemical etching switches electrocatalytic oxygen evolution pathway of IrOx/Y2O3 from adsorbate evolution mechanism to lattice-oxygen-mediated mechanism, Small, 2023, 19, 2303249.45. Wang Y#, Liu B#, Guo Q, Sun Y, Zhang S* and Qu Y*, Stabilized *OH species by K+-doped Pt for H2 generation through aqueous-phase reforming of methanol at low temperatures, Applied Catalysis B: Environmental, 2023, 338, 123011.44. Zhang S, Tian ZM, Ma Y and Qu Y*, Adsorption of molecules on defective CeO2 for advanced catalysis, ACS Catalysis, 2023, 13, 4629-4645.43. Zhai WF, Chen Y, Liu YD, Tian YH, Sakthivel T, Ma Y, Guo SW, Qu Y* and Dai ZF*, Bimetal-incorporated black phosphorene with surface electron deficiency for efficient anti-reconstruction water electrolysis, Advanced Functional Materials, 2023, 33, 2301565.42. Wang YQ#, Huang YJ#, Fu Y, Guo ZX, Chen D, Cao FX, Ye Q, Duan QQ, Liu M, Wang N, Tian ZM*, Qu Y* and Zheng Y*, Reductive damage induced autophagy inhibition for tumor therapy, Nano Research, 2023, 16, 5226-5236.41. Zhang S#*, Xia ZM#*, Li WB, Wang Y, Zou Y, Zhang MK, Gong ZM, Cui Y and Qu Y*, In-situ reconstruction of single-atom Pt on Co3O4 for hydrogenation, Nano Research, 2023, 16, 6507-6511.40. Huo WJ, Zhou XM*, Jin YW, Xie CQ, Yang S, Qian JJ, Cai D, Ge YJ, Qu Y*, Nie HG* and Yang Z*, Rhenium suppresses iridium (IV) oxide crystallization and enables efficient, stable electrochemical water oxidation, Small, 2023, 19, 2207847.39. Xue QY#, Xia ZM#, Gou WY, Bu J, Li JY*, Xiao H and Qu Y*, Identification and origination of the O*-dominated NiOOH species with high intrinsic activity for electrocatalytic alcohol oxidation, ACS Catalysis, 2023, 13, 400-406.38. Zhao JL#, Tian ZM#*, Zhao SJ#, Feng DY#, Guo ZX, Wen LZ, Zhu YJ, Xu FH, Zhu J, Ma SZ, Hu J, Jiang T, Qu Y*, Chen DF* and Liu L*, Intratumorally catalytic metabolism reprogramming through lactate oxidation for catalytic immunotherapy of tumor, Advanced Science, 2023, 10, 2204808.37. Gou WY#, Xia ZM#, Xue QY, Ye F, Zhang MK, Si R, Zou Y, Li JY, Dai S, Ma Y*, Johnny C. Ho* and Qu Y*, Highly active and stable amorphous IrOx for acidic oxygen evolution, Nano Energy, 2022, 104, 107960.36. Cao FX, Xiao YS, Zhang ZM, Li J, Xia ZM, Hu X, Ma Y* and Qu Y*,Recognitions of oxygen vacancy of CeO2 for CO2 hydrogenation, Journal of Catalysis, 2022, 414, 25-32.35. Ma Y#, Tian ZM#, Zhai WF and Qu Y*, Insights on catalytic mechanism of CeO2 as multiple nanozymes, Nano Research, 2022, 15, 10328-10342. (Special Issue: The Nano Research Young Innovators (NR45) Awards, 2022) 34. Zhang S, Liu YX, Zhang MK, Ma YY, Hu J* and Qu Y*, Sustainable production of hydrogen with high purity from methanol and water at low temperatures, Nature Communications, 2022, 13, 5527.33. Zhai WF#, Ma Y#, Chen D, Ho JC*, Dai ZF* and Qu Y*, Recent progress on the long-term stability of hydrogen evolution reaction electrocatalysts, InfoMat, 2022, 4, e12357.32. Zou Y#, Zhang MK#, Liu YX, Ma Y, Zhang S* and Qu Y*, Highly selective transfer hydrogenation of furfural into furfuryl alcohol by interfacial frustrated Lewis pairs on CeO2, Journal of Catalysis, 2022, 410, 54-62.31. Li J#, Tan Y#, Zhang MK#, Zhang S, Ma Y*, Hu J* and Qu Y*, Boosting electrocatalytic activity of Ru for acidic hydrogen evolution through hydrogen spillover strategy, ACS Energy Letters, 2022, 7, 1330-1337. 30. Tian ZM#, Zhao JL#, Zhao SJ#, Li HC, Guo ZX, Liang ZC, Li JY, Qu Y* Chen DF* and Liu L*, Phytic acid-modified CeO2 as Ca2+ inhibitor for a security reversal of tumor drug resistance, Nano Research, 2022, 15, 4334?434329. Zhang S.; Xia Z.M.; Zou Y.; Zhang M.K.;  Qu Y.*, Spatial intimacy of binary active-sites for selective sequential hydrogenation-condensation of nitriles into secondary imines, Nature Communications, 2021, 12: 3382.28. Li J.Y.; Hu J.*; Zhang M.K.; Gou W.Y.; Zhang S.; Chen Z.; Qu Y.*,; Ma Y.Y.*, A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution, Nature Communications, 2021, 12: 3502.27. Zhang S.*; Xia Z.M.; Zhang M.K.; Zou Y.; Shen H.D.; Li J.Y.; Chen. X.; Qu Y.*, Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature, Applied Catalysis B: Environmental, 2021, 297, 120418.26. Li JY#, Xia ZM#, Xue QY, Zhang MK, Zhang S, Xiao H, Ma Y* and Qu Y*, Insights into the interfacial Lewis acid–base pairs in CeO2-loaded CoS2 electrocatalysts for alkaline hydrogen evolution, Small, 2021, 17, 2103018.25.    Tian Z.M.;# Liu H.B.;# Guo Z.X.; Gou W.Y.; Liang Z.C.; Qu Y.*; Han L.L.* and Liu L.*, A pH-responsive polymer-CeO2 hybrid to catalytically generate oxidative stress for tumor therapy, Small, 2020, 16, 2004654. 24.    Zhang S.;# Gan J.;# Xia Z.M.; Zhang M.K.; Chen X.; Zou Y.; Duan X.Z.* and Qu Y.* Dual-active-sites design of Co@C catalysts for ultrahigh selective hydrogenation of N-heteroarenes, Chem, 2020, 6, 2994-3006. 23.    Zhang X.Q., Zhou D.; Wang X.J.; Zhou J.; Li J.F.; Zhang M.K.; Shen Y.H.; Chu H.B.* and Qu Y.* Overcoming the deactivation of Pt/CNT by introducing CeO2 for selective base-free glycerol-to-glyceric acid oxidation, ACS Catal., 2020, 10, 3832-3837. 22.    Tian Z.; Ma Y.; Yao T.; Zhang S.; Li X.; Xu D.; Xu Y.; Wang B.; Qu X. and Qu Y.* Photoactivity of CeO2 for repair of Ultraviolet-induced DNA damage, Nano Lett., 2019, 19, 8270-8277. 21.    Tian Z.; Yang K.; Yao T.; Li X.; Ma Y.; Qu C.; Qu X.; Xu Y., Guo Y. and Qu Y.* Catalytically selective chemotherapy from the tumor-metabolic generated lactic acid, Small, 2019, 1903746. 20.    Zhang S.; Xia Z.M.; Zou Y.; Cao F.; Liu Y. and Qu Y.* Interfacial frustrated-Lewis-pairs of CeO2 activate CO2 for selective tandem transformation of olefins and CO2 into cyclic carbonates, Journal of the American Chemical Society, 2019, 141, 11353-11357. 19.    Li J.;# Xia Z. M.#; Zhang M.; Zhang S.; Li J.; Ma Y.* and Qu Y.* Ce-doped CoS2 pyrite with weakened O2 adsorption suppresses catalyst leaching and stabilizes electrocatalytic H2 evolution, Journal of Materials Chemistry A, 2019, 7, 17775-17781. 18.    Li J.; Liu H.; Gou W.Y.; Zhang M.; Xia Z.; Zhang S.; Chang C.*; Ma Y.* and Qu Y.* Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentrating and hydrogen spillover. Energy & Environmental Science, 2019, 12, 2298-2304. 17.    Ma Y.; Zhang S.; Chang C.; Huang Z.; Ho J. C. and Qu Y.* Semi-solid and solid frustrated Lewis pair catalysts. Chemical Society Reviews, 2018, 47, 5541-5553. 16. Ma Y.; Gao W.; Zhang Z.; Zhang S.; Tian Z. Liu Y.; Ho J. C. and Qu Y.* Surface regulations of nanoceria and its applications in heterogeneous catalysis. Surface Science Reports, 2018, 73, 1-36. 15. Gao W.; Xia Z. M.; Cao F.; Ho J. C.*; Jiang Z.* and Qu Y.* Comprehensive understanding of the spatial configurations of CeO2 in NiO for electrocatalytic oxygen evolution reaction: embedded or surface-loaded. Advanced Functional Materials, 2018, 28, 1706056. 14. Gao W.; Yan M.; Cheung H. Y.; Xia Z.; Zhou X.; Qin Y.; Wong C.; Ho J. C.;* Chang C.* and Qu Y.* Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. Nano Energy, 2017, 38, 290-296. 13. Zhang S.; Ma Y.; Zhang H.; Zhou X.; Chen X. and Qu Y.* Additive-free, robust H2 production from H2O and DMF by dehydrogenation catalyzed by Cu/Cu2O formed in situ, Angewandte Chemie International Edition, 2017, 56, 8245-8249. 12. Zhang S.; Xia Z.; Ni T.; Zhang H.; Wu C. and Qu Y.* Tuning chemical compositions of bimetallic AuPd catalysts for selective catalytic hydrogenation of halogenated quinolines. Journal of Materials Chemistry A, 2017, 5, 3260-3266. (Selected as Hot Paper) 11. Zhang S.; Huang Z. Q.; Ma Y.; Gao W.; Li J.; Cao F.; Li L.; Chang C.* and Qu Y.* Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2, Nature Communications, 2017, 8, 15266. 10. Fang M.; Gao W.; Dong G.; Xia Z.; Yip S.; Qin Y.; Qu Y.* and Ho J. C.* Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy, 2016, 27, 247-254. 9. Li J.; Yan M.; Zhou X.; Huang Z.; Xia Z.; Chang C.;* Ma Y.* and Qu Y.* Mechanistic insights on ternary Ni2-xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Advanced Functional Materials, 2016, 26, 6785-6796. 8. Zhang S.; Chang C.; Huang Z., Li J.; Wu Z.; Ma Y.; Zhang Z.; Wang Y. and Qu Y.* High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes, Journal of the American Chemical Society, 2016, 138, 2629-2637. 7. Zhang S.; Chang C.; Huang Z.; Ma Y.; Gao W.; Li J. Qu Y.* Visible-light-activated Suzuki-Miyaura coupling reactions of aryl chlorides over the multifunctional Pd/Au/porous nanorods of CeO2 catalysts. ACS Catalysis, 2015, 5, 6481-6488. 6. Tian Z.; Li J.; Zhang Z.; Gao W.; Zhou X.; Qu Y.* Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection, Biomaterials, 2015, 59, 116-124. 5. Qu, Y.; Duan, X.* Progress, challenge and perspective of heterogeneous photocatalysts (Invited Review), Chemical Society Reviews, 2013, 42, 2568-2580. (ESI Paper) 4. Qu, Y.; Chen, R.; Su, Q.; Duan, X.* Plasmonic enhanced photoactivity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods. Journal of the American Chemical Society, 2011, 133, 16730-16733. 3. Qu, Y.; Xue, T.; Zhong, X.; Lin, Y. C.; Liao L.; Choi J.; Huang Y.; Duan, X.* Heterointegration of Pt/Si/Ag nanowire photodiodes and their photocatalytic properties. Advanced Functional Materials. 2010, 20, 3005-3011. 2. Qu, Y.; Liao, L.; Wang, Y.; Cheng, R.; Lin, Y.; Huang Y.; Duan, X.* Rational design and synthesis of photoelectric nanodevices as highly efficient photocatalysts. Nano Lett., 2010, 10, 1941-1949. 1. Qu, Y.; Liao, L.; Li, Y; Huang Y.; Duan, X.* Electrically conductive and optically active porous silicon nanowires. Nano Letters 2009, 9, 4539-4543.

学术成果

团队信息 Team Information

综合介绍

杨永