李灿
姓名 | 李灿 |
教师编号 | 4404 |
性别 | 男 |
学校 | 西北工业大学 |
部门 | 材料学院 |
学位 | 哲学博士学位 |
学历 | 博士研究生毕业 |
职称 | 副高 |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
综合介绍 General Introduction 李灿,男,哲学博士。于2013年和2015年分别获得清华大学学士和硕士学位,于2020年获得香港大学博士学位,其后在香港大学从事研究工作。2021年加入西北工业大学材料学院。主要从事窄带隙钙钛矿、钙钛矿叠层太阳能电池的研究工作,目前已在Advanced Materials, Advanced Energy Materials, Journal of Materials Chemistry A, Small, ACS Applied Materials & Interfaces, Small Methods等材料和能源领域著名国际学术刊物上发表SCI论文20余篇。 个人相册 教育教学个人经历 personal experience 工作经历 教育经历 2021年3月至今 西北工业大学材料学院 副教授2020年4月-2021年2月 香港大学电机电子工程系 博士后 2009-2013 清华大学 机械工程及自动化 工学学士2013-2015 清华大学 材料科学与工程 工学硕士2016-2020 香港大学 电机与电子工程 哲学博士 荣誉获奖教育教学 Education and teaching 教育信息 本科生课程《新能源材料与技术经济学》研究生课程《The Physics of Solar Cells》 科学研究获奖信息 The winning information 2022年 西北工业大学校级优秀辅导员2015年 香港政府博士生奖学金2013年 清华大学优良毕业生 学术成果社会兼职 Social Appointments 综合介绍学术成果 Academic Achievements [1] Meng R, Li C*(共同通讯), Shi J, Wan Z, Li Z, Zhi C, Zhang Y, Li Z*. Reductive 2D Capping Layers through Dopamine Salt Incorporation for Pb–Sn Mixed Perovskite Solar Cells[J]. ACS Energy Letters, 2023: 5206–5214.[2] Meng R#, Li C#(共同一作), Yang L, Li Z, Wan Z, Shi J, Li Z. Solvent bath annealing-induced liquid phase Ostwald ripening enabling efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2023, 11(9): 4780–4788.[3] Li C, Tao R, Ding Y, Liu C, Ding X, Xu H, Zhi C, Jia C, Li Z. Highly Visible‐Transparent and Color‐Neutral Perovskite Solar Cells for Self‐Powered Smart Windows[J]. Solar RRL, 2022, 6(6): 2101009.[4] Li C, Xu H, Zhi C, Wan Z, Li Z. TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells[J]. Chinese Physics B, 2022, 31(11): 118802.[5] Li C, Wang Y, Choy W C H. Efficient Interconnection in Perovskite Tandem Solar Cells[J]. Small Methods, 2020, 4(7): 2000093.[6] Li C, Ma R, He X, Yang T, Zhou Z, Yang S, Liang Y, Sun X W, Wang J, Yan Y, Choy W C H. In Situ Tin(II) Complex Antisolvent Process Featuring Simultaneous Quasi‐Core–Shell Structure and Heterojunction for Improving Efficiency and Stability of Low‐Bandgap Perovskite Solar Cells[J]. Advanced Energy Materials, 2020, 10(8): 1903013.[7] Li C, Wang Z S, Zhu H L, Zhang D, Cheng J, Lin H, Ouyang D, Choy W C H. Thermionic Emission–Based Interconnecting Layer Featuring Solvent Resistance for Monolithic Tandem Solar Cells with Solution‐Processed Perovskites[J]. Advanced Energy Materials, 2018, 8(36): 1801954.[8] Li C, Li Y, Xing Y, Zhang Z, Zhang X, Li Z, Shi Y, Ma T, Ma R, Wang K, Wei J. Perovskite Solar Cell Using a Two-Dimensional Titania Nanosheet Thin Film as the Compact Layer[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15117–15122.[9] Li Z, Wan Z, Jia C, Zhang M, Zhang M, Xue J, Shen J, Li C, Zhang C, Li Z. Cross-linked polyelectrolyte reinforced SnO2 electron transport layer for robust flexible perovskite solar cells[J]. Journal of Energy Chemistry, 2023, 85: 335–342.[10] Wang M, Wan Z, Li Z, Jia C, Zhang W, Hu Q, Huang W, Li C, Gui X, Li Z. Full spectrum solar hydrogen production by tandems of perovskite solar cells and photothermal enhanced electrocatalysts[J]. Chemical Engineering Journal, 2023, 460: 141702.[11] Ding Y, Sun H, Li Z, Jia C, Ding X, Li C, Wang J-G, Li Z. Galvanic-driven deposition of large-area Prussian blue films for flexible battery-type electrochromic devices[J]. Journal of Materials Chemistry A, 2023, 11(6): 2868–2875.[12] Li Z, Jia C, Wan Z, Xue J, Cao J, Zhang M, Li C, Shen J, Zhang C, Li Z. Hyperbranched polymer functionalized flexible perovskite solar cells with mechanical robustness and reduced lead leakage[J]. Nature Communications, 2023, 14(1): 6451.[13] Zhi C, Wang S, Sun S, Li C, Li Z, Wan Z, Wang H, Li Z, Liu Z. Machine-Learning-Assisted Screening of Interface Passivation Materials for Perovskite Solar Cells[J]. ACS Energy Letters, 2023, 8(3): 1424–1433.[14] Li Z, Wang Z, Jia C, Wan Z, Zhi C, Li C, Zhang M, Zhang C, Li Z. Annealing free tin oxide electron transport layers for flexible perovskite solar cells[J]. Nano Energy, 2022, 94: 106919.[15] Wang M, Wan Z, Meng X, Li Z, Ding X, Li P, Li C, Wang J-G, Li Z. Heterostructured Co/Mo-sulfide catalyst enables unbiased solar water splitting by integration with perovskite solar cells[J]. Applied Catalysis B: Environmental, 2022, 309: 121272.[16] Ma R, Zheng J, Tian Y, Li C, Lyu B, Lu L, Su Z, Chen L, Gao X, Tang J, Choy W C H. Self‐Polymerization of Monomer and Induced Interactions with Perovskite for Highly Performed and Stable Perovskite Solar Cells[J]. Advanced Functional Materials, 2021, 32(1): 2105290.[17] Li H, Lin H, Ouyang D, Yao C, Li C, Sun J, Song Y, Wang Y, Yan Y, Wang Y, Dong Q, Choy W C H. Efficient and Stable Red Perovskite Light‐Emitting Diodes with Operational Stability >300 h[J]. Advanced Materials, 2021, 33(15): e2008820.[18] Ma R, Ren Z, Li C, Wang Y, Huang Z, Zhao Y, Yang T, Liang Y, Sun X W, Choy W C H. Establishing Multifunctional Interface Layer of Perovskite Ligand Modified Lead Sulfide Quantum Dots for Improving the Performance and Stability of Perovskite Solar Cells[J]. Small, 2020, 16(41): e2002628.[19] Wang Y, Chen G, Ouyang D, He X, Li C, Ma R, Yin W, Choy W C H. High Phase Stability in CsPbI3 Enabled by Pb–I Octahedra Anchors for Efficient Inorganic Perovskite Photovoltaics[J]. Advanced Materials, 2020, 32(24): e2000186.[20] Cheng J, Zhang H, Zhao Y, Mao J, Li C, Zhang S, Wong K S, Hou J, Choy W C H. Self‐Assembled Quasi‐3D Nanocomposite: A Novel p‐Type Hole Transport Layer for High Performance Inverted Organic Solar Cells[J]. Advanced Functional Materials, 2018, 28(15): 1706403.[21] Cao X, Li Y, Li C, Fang F, Yao Y, Cui X, Wei J. Modulating Hysteresis of Perovskite Solar Cells by a Poling Voltage[J]. The Journal of Physical Chemistry C, 2016, 120(40): 22784–22792.[22] Guo F, Li C, Wei J, Xu R, Zhang Z, Cui X, Wang K, Wu D. Fabrication of highly conductive carbon nanotube fibers for electrical application[J]. Materials Research Express, 2015, 2(9): 095604.[23] He S, Wei J, Guo F, Xu R, Li C, Cui X, Zhu H, Wang K, Wu D. A large area, flexible polyaniline/buckypaper composite with a core–shell structure for efficient supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(16): 5898–5902. |