教师主页移动版

主页 > 陕西省 > 西北工业大学

谭小俊

姓名 谭小俊
性别
学校 西北工业大学
部门 民航学院
学位 工学博士学位
学历 博士研究生毕业
职称 副高
联系方式 实用新型1875包写包过
邮箱 软件测试报告2199包写包过
   
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料

综合介绍 General Introduction     谭小俊,男,江苏东台人,博士,副教授,硕士生导师。    长期从事先进结构与智能系统的设计及应用研究工作,研究领域涉及力学超结构、软体机器人及智能结构材料等。近年来在Small, Advanced Intelligent Systems, Extreme Mechanics Letters, European Journal of Mechanics-A/Solids, Composites Part B: Engineering, Smart Materials and Structures, International Journal of mechanical Sciences等力学与结构领域权威期刊上发表SCI检索论文30余篇(封面论文2篇,Extreme Mechanics Letters高被引论文2篇)。发表成果累计被引1100余次(h指数19)。曾获“威立Wiley中国开放科学高贡献作者奖”,“IOP中国高被引论文奖”等荣誉。 个人相册

教育教学

个人经历 personal experience 教育经历 博士(2017.09-2022.04)          哈尔滨工业大学                       工程力学(合作导师:王兵教授、吴林志教授)博士联合培养(2020.12-2022.01)  法国国家科学研究中心FEMTO-ST研究院 机械工程(合作导师:Muamer Kadic、Vincent Laude) 硕士(2015.09-2017.07)          哈尔滨工业大学                       动力学与控制(合作导师:曹登庆教授)本科(2011.09-2015.07)            哈尔滨工程大学                       船舶与海洋工程(合作导师:马勇教授)

荣誉获奖

教育教学 Education and teaching 招生信息 硕士招生方向:力学、航空工程。本科相近专业(不限于):飞行器设计、船舶与海洋工程,机械工程,工程力学等。若有意向报考2024年研究生,欢迎与我联系(xiaojun.tan@nwpu.edu.cn)。团队目前研究方向聚焦学术前沿,学生有充分的自主空间,欢迎报考。欢迎本科生进团队开展科创等工作。

科学研究

社会兼职 Social Appointments 应用力学学报,Scientific Reports, European Journal of Mechanics A-Solids,International Journal of Mechanical Sciences, Thin-Walled Structures, Frontiers in Materials等期刊审稿人。中国力学学会会员,中国复合材料学会会员期刊‘Polymers’客座编辑超材料学会青年理事陕西省自然科学基金评审专家

学术成果

科学研究 Scientific Research 研究方向:1. 力学超材料/结构设计(负刚度、负泊松比、压扭、微尺度等)与应用(缓冲吸能、减振降噪、软体机器人)2. 软体机器人3. 智能材料与结构4. 碳纤维增强树脂基复合材料结构5. 3D打印技术科研项目:1.中央高校基本科研业务费,2022-2024,在研,主持。2.K*J纵向项目,2023-2024,在研,主持。3.国家自然科学基金委员会,2024-2026,青年项目,主持。4.太仓市基础研究计划,2023-2025,面上项目,主持。3.国家自然科学基金委员会, 面上项目(11972135), 新型复合材料褶皱承力筒结构设计制备及其关键力学问题, 2020-2023, 63万元, 在研, 参与。4.国家自然科学基金委员会, 面上项目(11972008), 具有负刚度特性的多孔结构设计及其吸能特性研究,2020-2023, 62万元, 在研, 参与5.国家自然科学基金委员会, 面上项目(11872162), 3D打印连续碳纤维增强复合材料与结构的力学性能 和破坏机理研究, 2019-2022, 63万元, 完成, 参与。

综合介绍

学术成果 Academic Achievements 期刊论文2023Liu X, Tan X, Wang B, et al. Research on hierarchical cylindrical negative stiffness structures’ energy absorption characteristics[J]. Smart Materials and Structures, 2023.Wang, J., Zhu, S, ... & Tan, X. Data mining from a hierarchical dataset for mechanical metamaterials composed of curved-sides triangles. Composite Structures, 319, 117153, 2023.Tan X*, Li Y, Wang L, et al. Bioinspired flexible and programmable negative stiffness mechanical metamaterials[J]. Advanced Intelligent Systems, 2023: 2200400. (威立Wiley中国开放科学高贡献作者奖)2022Tan X, Martínez J A I, Ulliac G, et al. Single‐Step‐Lithography Micro‐Stepper Based on Frictional Contact and Chiral Metamaterial[J]. Small, 2022: 2202128.Tan X, Wang L, Zhu S, et al. A general strategy for performance enhancement of negative stiffness mechanical metamaterials[J]. European Journal of Mechanics-A/Solids, 2022, 96: 104702.Chen S, Tan X, Hu J, et al. Continuous carbon fiber reinforced composite negative stiffness mechanical metamaterial for recoverable energy absorption[J]. Composite Structures, 2022, 288: 115411.Tan X, Wang B, Wang L, et al. Effect of beam configuration on its multistable and negative stiffness properties[J]. Composite Structures, 2022, 286: 115308.Xu P, Zhou Z, Liu T, et al. In-situ damage assessment of FML joints under uniaxial tension combining with acoustic emission and DIC: Geometric influence on damage formation[J]. Thin-Walled Structures, 2022, 170: 108515.2021Chen S, Tan X, Hu J, et al. A novel gradient negative stiffness honeycomb for recoverable energy absorption[J]. Composites Part B: Engineering, 2021, 215: 108745.Wang L, Tan X, Zhu S, et al. Directional instability-driven strain-dependent 3D auxetic metamaterials[J]. International Journal of Mechanical Sciences, 2021, 199: 106408.Zhu S, Wang B, Tan X*, et al. A novel bi-material negative stiffness metamaterial in sleeve-type via combining rigidity with softness[J]. Composite Structures, 2021, 262: 113381.Wang L, Zhu S, Wang B*, X Tan*, et al. Latitude-and-longitude-inspired three-dimensional auxetic metamaterials[J]. Extreme Mechanics Letters, 2021, 42: 101142.2020Tan X, Chen S, Wang B, et al. Real-time tunable negative stiffness mechanical metamaterial[J]. Extreme Mechanics Letters, 2020, 41: 100990.  (2020年1月以来 Extreme Mechanics Letters引用最多的研究性论文。鉴于大量顶级科学家在Extreme Mechanics Letters上发文,所以此成就还是挺牛的。)Zhu S, Hu J, Tan X, et al. Mechanics of sandwich panels with a buckling-dominated lattice core: The effects of the initial rod curvatures[J]. Composite Structures, 2020, 251: 112669.Wang B, Fang G, Tan X, et al. Investigation on the longitudinal compressive strength of unidirectional carbon fiber/nanoparticles reinforced polymer composites using FFT-based method[J]. Composite Structures, 2020, 247: 112448.Xu P, Zhou Z, Liu T, et al. A novel double-spring analytical model for hybrid GLARE joints: Model development, validation, parameter study and global sensitivity analysis[J]. International Journal of Mechanical Sciences, 2020, 177: 105606.Zhu S#, Tan X#, Chen S, et al. Quasi‐All‐Directional Negative Stiffness Metamaterials Based on Negative Rotation Stiffness Elements[J]. physica status solidi (b), 2020, 257(6): 1900538.Xu P, Zhou Z, Liu T, et al. The investigation of viscoelastic mechanical behaviors of bolted GLARE joints: Modeling and experiments[J]. International Journal of Mechanical Sciences, 2020, 175: 105538.Tan X, Zhu S, Wang B, et al. Mechanical response of negative stiffness truncated-conical shell systems: experiment, numerical simulation and empirical model[J]. Composites Part B: Engineering, 2020, 188: 107898.Tan X, Wang B, Yao Y, et al. Programmable Buckling-based negative stiffness metamaterial[J]. Materials Letters, 2020, 262: 127072.Chen S, Wang B, Zhu S, et al. A novel composite negative stiffness structure for recoverable trapping energy[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105697.2019Tan X, Wang B, Zhu S, et al. Novel multidirectional negative stiffness mechanical metamaterials[J]. Smart Materials and Structures, 2019, 29(1): 015037. (IOP中国高被引论文奖)Tan X, Wang B, Yao K, et al. Novel multi-stable mechanical metamaterials for trapping energy through shear deformation[J]. International Journal of Mechanical Sciences, 2019, 164: 105168.Wang B*, Tan X, Zhu S, et al. Cushion performance of cylindrical negative stiffness structures: Analysis and optimization[J]. Composite Structures, 2019, 227: 111276.Zhu S, Tan X, Wang B, et al. Bio-inspired multistable metamaterials with reusable large deformation and ultra-high mechanical performance[J]. Extreme Mechanics Letters, 2019, 32: 100548.Xu P, Zhou Z, Liu T, et al. Propagation of damage in bolt jointed and hybrid jointed GLARE structures subjected to the quasi-static loading[J]. Composite Structures, 2019, 218: 79-94.Tan X, Chen S, Zhu S, et al. Reusable metamaterial via inelastic instability for energy absorption[J]. International Journal of Mechanical Sciences, 2019, 155: 509-517.Tan X, Wang B, Chen S, et al. A novel cylindrical negative stiffness structure for shock isolation[J]. Composite Structures, 2019, 214: 397-405.Tan X, Chen S, Wang B, et al. Design, fabrication, and characterization of multistable mechanical metamaterials for trapping energy[J]. Extreme Mechanics Letters, 2019, 28: 8-21. (2018-2020  Extreme Mechanics Letters期刊高被引论文)2017Liu L, Cao D, Wei J, X Tan, T Yu. Rigid-flexible coupling dynamic modeling and vibration control for a three-axis stabilized spacecraft[J]. Journal of Vibration and Acoustics, 2017, 139(4).2016Liu L, Cao D, Tan X. Studies on global analytical mode for a three-axis attitude stabilized spacecraft by using the Rayleigh–Ritz method[J]. Archive of Applied Mechanics, 2016, 86(12): 1927-1946.专利[1] 王兵; 陈帅; 谭小俊; 朱绍伟; 邹亚军; 胡记强; 王连超; 连续.一种复合型负刚度吸能蜂窝结构及其制备方法(CN201911082507.5), 2021-04-02

谭小俊