罗海陆教师主页|湖南大学物理与微电子科学学院简历|罗海陆招生信息|罗海陆专利信息

教师主页移动版

主页 > 湖南省 > 湖南大学

罗海陆

姓名 罗海陆
教师编号 12348
性别 发明专利4999代写全部资料
学校 湖南大学
部门 物理与微电子科学学院
学位 发明专利包写包过 特惠申请
学历 版权登记666包过 代写全部资料
职称 软件著作权666包写包过
联系方式 【发送到邮箱】
邮箱 【发送到邮箱】
人气
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳

基本信息 罗海陆博士目前为湖南大学物理学院教授。他于2007年获得南京大学理论物理博士学位,同年加入湖南大学,担任助理教授,2016年晋升为教授。2009年创立自旋光子学实验室并担任实验室负责人,在自旋光子学领域进行了系统而深入的研究并取得了系列进展,发展了基于光子自旋霍尔效应的精密测量技术与全光图像处理技术。他目前的研究兴趣专注于自旋光子学的基础理论及其在光学模拟计算、全光图像处理、量子测量、量子成像方面的应用。他带领课题组在 Physical Review Letters、PNAS、National Science Review、Science Advances、Light: Science & Applications、Reports on Progress in Physics、Opto-Electronic Advances、Opto-Electronic Science等高水平期刊杂志发表论文100余篇,论文被国内外同行引用8000余次,H因子为48(Google Scholar)。他连续三年 (2020-2022) 入选爱思唯尔中国高被引学者。   Dr. Hailu Luo is currently a professor in school of physics at Hunan University. He received a PhD degree in theoretical physics from Nanjing University in 2007. He joined Hunan University as an assistant professor in the same year, and was promoted to professor in 2016. He established the Laboratory for Spin Photonics in 2009 and took the head of the spin photonics group. He has conducted systematic and in-depth research and made a series of progress in the field of spin photonics, and developed precision measurement technology and all-optical image processing technology based on the photonic spin Hall effect. His current research interests focus on the fundamental theory of spin photonics and its applications in optical analog computing, all-optical image processing, quantum measurement, and quantum imaging. The research group has published more than 100 journal peer-reviewed papers in Physical Review Letters, PNAS, National Science Review, Science Advances, Light: Science & Applications, Reports on Progress in Physics, Opto-Electronic Advances, and Opto-Electronic Science. The papers have been cited more than 8,000 times and H-index scores 48 (Google Scholar). He was selected as the Most Cited Chinese Researchers in Elsevier (2020-2022).

教育背景

学术成果   List of Publications: 2022 1.  Realization of all-optical higher-order spatial differentiators based on cascaded operations, Optics Letters 47, 5981 (2022).  2.  Visualization of transparent particles based on optical spatial differentiation, Optics Letters 47, 5754 (2022). 3.  Photonic Spin-Hall Differential Microscopy, Physical Review Applied 18, 044016 (2022). Editors' Suggestion 4.  Computing Metasurfaces Enabled Broad-Band Vectorial Differential Interference Contrast Microscopy, ACS Photonics  (2022).         (Invited Paper for Photonics in China special issue) 5.  Inverse design of Pancharatnam–Berry phase metasurfaces for all-optical image edge detection,  Applied Physics  Letters 120, 241101 (2022) . 6.  Computing metasurfaces enabled chiral edge image sensing, iScience 25, 104532 (2022). ( Invited Paper )  7.  Photonic Spin Hall Effect: Fundamentals and Emergent Applications, Opto-Electronic Science  1, 220007 (2022). ( Invited Review )         AAAS EurekAlert!    Phys.Org    AlphaGalileo    SpaceDaily   8.  Intrinsic optical spatial differentiation enabled quantum dark-field microscopy, Physical Review Letters 128, 193601  (2022).  9.  Photonic spin Hall effect in twisted few-layer anisotropic two-dimensional atomic crystals, Physical Review A 105, 043507 (2022).  10.  光子自旋霍尔效应及其在物性参数测量中的应用, 物理学进展  42, 35 (2022). ( 邀请综述 ) 11.  光的自旋-轨道相互作用,  量子电子学报  39, 159 (2022). ( 邀请综述 ) 12.  Multiple weak value quantum measurement for precision estimation of time delay, Physical Review A 105, 033521 (2022).  13.  Computing metasurfaces for all-optical image processing: a brief review, Nanophotonics 11, 1083 (2022). ( Invited Review ) 73.  Realization of tunable edge-enhanced images based on computing metasurfaces, Optics  Letters 47, 925 (2022). 14.  All-optical differentiator in frequency domain,  Applied Physics  Letters 120, 011102 (2022) . 15. Beam shifts in two-dimensional atomic crystals, Journal of Physics D: Applied Physics 55, 133001 (2022). ( Invited Review ) 2021 1.  Enhanced optical spatial differential operations via strong spin-orbit interactions in an anisotropic epsilon-near-zero slab, Physical Review A 104, 053513  (2021). 2. Polarization evolution on the higher-order Poincare sphere via photonic Dirac points, Physical Review A 104, 013504  (2021). 3. Realization of ultra-small stress birefringence detection with weak-value amplification technique, Applied Physics Letters  118, 161104 (2021). 4. Nonspecular effects in the vicinity of a photonic Dirac point, Physical Review A  103, 023522 (2021). 5. Two-dimensional optical spatial differentiation and high-contrast imaging, National Science Review  8, nwaa176 (2021).  AAAS EurekAlert! 2020 1.  Optical analog computing of two-dimensional spatial differentiation based on Brewster effect, Optics Letters  45, 6867(2020). 2.  Weak-value amplification for optical signature of topological phase transitions, Photonics Research 8, B47 (2020). 3.  Metasurface enabled quantum edge detection, Science Advances 6,eabc4385 (2020).  Phys.Org  4. Goos-Hanchen effect enabled optical differential operation and image edge detection, Applied Physics Letters  116, 211103 (2020). 5. Wavelength-independent optical fully differential operation based on the spin-orbit interaction of light, APL Photonics 5, 036105 (2020).  AIP Scilight 6. Giant photonic spin Hall effect near the Dirac points, Physical Review A  101, 023826 (2020). 7. Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect, Physical Review Applied  13, 014057 (2020). 8. Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect, APL Photonics  5, 016105 (2020). 9. Spatial differential operation and edge detection based on geometric spin Hall effect of light, Optics Letters  45, 877 (2020). 2019 1. Ultrasensitive detection of ion concentration based on photonic spin Hall effect, Applied Physics Letters 115, 251102 (2019). 2.  Spin controlled wavefront shaping metasurface with low dispersion in visible frequencies, Nanoscale 11, 17111 (2019). 3.  Optical edge detection based on high efficiency dielectric metasurface, Proceedings of the National Academy of Sciences 116, 11137 (2019). 4.  Goos-Hänchen and Imbert-Fedorov effects in Weyl semimetals, Physical Review A 99, 023807 (2019). 5.  Large in-plane asymmetry spin angular shifts of light beam near critical angle, Optics Letters 44, 207 (2019). 2018 1.  Weak-value amplification for Weyl-point separation in momentum space, New Journal of Physics 20, 103050 (2018). 2.  Transitional Goos-Hänchen effect due to the topological phase transitions, Optics Express 26, 23705 (2018). 3.   Electrically driven generation of arbitrary vector vortex beams on the hybrid-order Poincaré sphere,  Optics Letters 43, 3570 (2018). 4.   Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,  Photonics Research 6, 511 (2018). 5.  Broadband Photonic Spin Hall Meta-Lens, ACS Nano 12, 82 (2018). 2017 1.  Giant quantized Goos-Hanchen effect on the surface of graphene in quantum Hall regime,  Physical Review A 96, 043814 (2017). 2.  Precise identification of graphene layers at the air-prism interface via pseudo-Brewster angle,  Optics Letters42, 4135 (2017). 3.  Measurements of Pancharatnam-Berry phase in mode transformations on hybrid-order Poincaré sphere,  Optics Letters42, 3447 (2017). 4.  Strong spin-orbit interaction of light on the surface of atomically thin crystals,  Physical Review A 95, 063827 (2017). 5.  Geometric phase Doppler effect: when structured light meets rotating structured materials, Optics Express 25, 11564 (2017). 6.  Recent advances in spin Hall effect of light, Reports on Progress in Physics 80, 066401 (2017). (Invited Review) 7.  Observation of the Goos-Hänchen shift in graphene via weak measurements, Applied Physics Letters 110, 161115 (2017). 8.  Dielectric metasurfaces for quantum weak measurements, Applied Physics Letters 110, 031105 (2017). 9.  Quantized spin Hall effect in graphene,  Physical Review A 95, 013809 (2017). 10.  Observation of tiny polarization rotation rate in total internal reflection via weak measurements, Photonics Research 5, 92 (2017). 11.  Polarization evolution of vector beams generated by q-plates, Photonics Research 5, 64 (2017). 12.  Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere, Photonics Research 5, 15 (2017). 13.  Photonic spin Hall effect in metasurfaces: a brief review, Nanophotonics 6, 51 (2017). ( Invited Review ) 2016 1.  Propagation model for vector beams generated by metasurfaces, Optics Express 24, 21177 (2016). 2.  Compact photonic spin filter,  Applied Physics Letters 109, 181104 (2016). 3. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens, Applied Physics Letters108, 101102 (2016). 2015 1.  Photonic spin filter with dielectric metasurfaces, Optics Express 23, 33079 (2015). 2.  Higher-order laser mode converters with dielectric metasurfaces, Optics Letters 40, 5506 (2015). 3.  Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces,  Applied Physics Letters 107, 041107 (2015). 4.  Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases,  Optics Letters40, 3193 (2015). 5.  Manipulating the spin-dependent splitting by geometric Doppler effect,  Optics Express 23, 16682 (2015). 6.  Modified weak measurements for the detection of the photonic spin Hall effect, Physical Review A 91, 062105 (2015). 7.  Hybrid-order Poincare sphere, Physical Review A 91, 023801 (2015). 8.  Photonic spin Hall effect in dielectric metasurfaces with rotational symmetry breaking, Optics Letters40, 756 (2015). 9. Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces, Optics Express 23, 1767 (2015). 10.  Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence, Light: Science & Applications 4, e290 (2015). Before 2015   1. Construction of a polarization insensitive lens by quasiisotropic metamaterial slab, Physical Review E 75, 0266011 (2007). 2. Reversed propagation dynamics of Lagurre-Gaussian beams in left-handed materials, Physical Review A  77, 023812 (2008). 3.  Rotational Doppler effect in left-handed materials, Physical Review A 78, 033805 (2008). 4.  Spin Hall effect of a light beam in left-handed materials, Physical Review A 80, 0438101 (2009). 5.  Role of transverse-momentum currents in the optical Magnus effect in free space, Physical Review A 81, 0538261 (2010). 6.  Spin Hall effect of light in photon tunneling, Physical Review A 82, 0438251 (2010). 7.  Enhancing or suppressing the spin Hall effect of light in layered nanostructures, Physical Review A 84, 033801 (2011). 8.  Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection, Physical Review A 84, 043806 (2011). 9.  Steering far-field spin-dependent splitting of light by inhomogeneous anisotropic media, Physical Review A 86, 053824 (2012). 10.  Goos-Hanchen and Imbert-Fedorov shifts of vortex beams at air–left-handed-material interfaces, Physical Review A 85, 053822 (2012). 11.  Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements, Physical Review A 85, 043809 (2012). 12.  Weak measurements of a large spin angular splitting of light beam on reflection at the Brewster angle, Optics Express 20, 16003 (2012). 13.  Identifying graphene layers via spin Hall effect of light, Applied Physics Letters 101, 251602 (2012). 14.  Photonic spin Hall effect in topological insulators, Physical Review A 88, 053840 (2013). 15.  Generation of cylindrical vector vortex beams by two cascaded metasurfaces, Optics Express 22, 17207 (2014). 16.  Generation of arbitrary cylindrical vector beams on the higher order Poincare sphere, Optics Letters 39, 5274 (2014). 17.  Determination of magneto-optical constant of Fe films with weak measurements, Applied Physics Letters 105, 131111 (2014). 18.  Realization of polarization evolution on higher-order Poincare sphere with metasurface, Applied Physics Letters 104, 191110 (2014). 19.  Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect, Applied Physics Letters 105, 151101 (2014). 20. Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect, Applied Physics Letters 104, 051130 (2014).

工作履历

奖励与荣誉 Elsevier's 2022 Most Cited Chinese Researchers ( Electronic Science and Technology ) Elsevier's 2021 Most Cited Chinese Researchers ( Electronic Science and Technology ) Elsevier's 2020 Most Cited Chinese Researchers ( Physics ) Outstanding Achievement Award for Scientific Research of Higher Education Institutions of the Ministry of Education (2020, Second Prize) Natural Science Foundation for Distinguished Young Scholars of Hunan Province

研究领域

学术成果

杨永