吴丹
姓名 | 吴丹 |
教师编号 | 11759 |
性别 | 发明专利4999代写全部资料 |
学校 | 湖南大学 |
部门 | 数学学院 |
学位 | 发明专利包写包过 特惠申请 |
学历 | 版权登记666包过 代写全部资料 |
职称 | 软件著作权666包写包过 |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
Dan WU, Ph.D. 职称 Position: 副教授 Associate Professor 学位/学历 Degree: 博士 Ph.D. 地址 Address: 湖南省长沙市湖南大学数学学院 School of Mathematics, Hunan University, Changsha 410082, China 办公室 Office: 数学院 415, Math Building Email: danwu@hnu.edu.cn 教育背景研究方向 Research Interests 非线性偏微分方程 Nonlinear Partial Differential Equations 随机微分方程 Stochastic Differential Equations 随机控制与金融数学 Stochastic Control and Financial Mathematics 工作履历学习经历 Education 2008--2013:中国科学院数学与系统科学研究院 应用数学所 应用数学专业(硕博连读) 获理学博士学位 2004--2008:湖南师范大学数学与计算科学学院 数学与应用数学专业 获理学学士学位 2008--2013, Ph.D. in Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences. 2004--2008, B.Sc. in Mathematics, College of Mathematics and Computer Science, Hunan Normal University. 研究领域工作经历 Working Experience 2020--至今:湖南大学数学学院 副教授 2015--2020:湖南大学数学学院 助理教授 2017--2018:美国德州大学圣安东尼奥分校 (UTSA) 访问学者 2013--2015:湖南大学数学与计量经济学院 博士后 2020--Present, Associate Professor, School of Mathematics, Hunan University. 2015--2020, Assistant Professor, School of Mathematics, Hunan University. 2017--2018, Visiting Scholar, Department of Mathematics, University of Texas at San Antonio, United States. 2013--2015, Postdoctoral Fellow, College of Mathematics and Econometrics, Hunan University. 学术成果主要学术论文 Representative Publications [1] Dan Wu. Existence and stability of standing waves for nonlinear fractional Schrödinger equations with Hartree type nonlinearity. Journal of Mathematical Analysis and Applications, 411 (2014), no. 2, pp. 530–542.[2] Dan Wu. Mass concentration phenomenon for inhomogeneous fractional Hartree equations. Journal of Mathematical Physics, 55 (2014), no. 11, 111501, 20 pp.[3] Dan Wu. On global existence for mass-supercritical nonlinear fractional Hartree equations. Acta Mathematicae Applicatae Sinica, English Series, 33 (2017), pp. 389–400.[4] Hui Guo, Dan Wu. Nodal solutions for the Schrödinger-Poisson equations with convolution terms. Nonlinear Analysis. 196 (2020), 111781, 19 pp.[5] Wei Dai, Guolin Qin, Dan Wu. Direct methods for pseudo-relativistic Schrödinger operators. Journal of Geometric Analysis. 31 (2021), pp. 5555–5618.[6] Haijun Luo, Dan Wu. Normalized ground states for general pseudo-relativistic Schrödinger equations. Applicable Analysis. 101 (2022), pp. 3410-3431.[7] Jiaming Jin, Linxin Shu, Dejun Tai, Dan Wu. Normal conformal metrics on with singular Q-curvature having power-like growth. Journal of Differential Equations. 327 (2022), pp. 64-108.[8] Quancheng Yang, Dan Wu, Xiaobao Shu. Existence and stability results of mild solutions for random impulsive stochastic partial differential equations with noncompact semigroups. Stochastics: An International Journal of Probability and Stochastic Processes. (2022). Accepted and published online https://doi.org/10.1080/17442508.2022.2056415[9] Qian-Bao Yin, Yu Guo, Dan Wu, Xiao-Bao Shu. Existence and multiplicity of mild solutions for first-order Hamilton random impulsive differential equations with Dirichlet boundary conditions. Qualitative Theory of Dynamical Systems. (2023). Accepted and published online https://doi.org/10.1007/s12346-023-00748-5 [10] Hui Lu, Dan Wu. Existence and stability of traveling waves for semi-relativistic Schrödinger equations with van der Waals type potentials. Journal of Mathematical Physics, (2023). Accepted |