崔文学
姓名 | 崔文学 |
教师编号 | 91988 |
性别 | 崔文学 |
学校 | 哈尔滨工业大学 |
部门 | 计算学部 |
学位 | 崔文学 |
学历 | 崔文学 |
职称 | 讲师 |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
基本信息 科学研究 新建主栏目 基本信息 名称 崔文学,男,山东聊城人,汉族。工学博士,哈尔滨工业大学(哈工大)计算学部,智能接口与人机交互技术研究中心。 主要研究方向包括图像/视频编码,图像/视频恢复与重建,计算机视觉,高光谱图像处理,多媒体安全等。近年来主持国家自然科学青年基金,并参与多项国家级研究课题,包括国家973计划、国家自然科学基金、国家重点研发计划等。此外,作为技术骨干深度参与多项横向项目,包括与阿里巴巴、华为、中兴等企业合作的项目。在国内外重要学术期刊和会议上发表学术论文十余篇,申请发明专利及技术提案近十项。 教育经历 标题 起讫时间 2016.09-2022.12 所学专业 计算机科学与技术 学习机构 哈尔滨工业大学-计算学部 学历 博士 简单介绍 标题 起讫时间 2012.09-2016.07 所学专业 信息与计算科学 学习机构 东北林业大学-理学院 学历 本科 简单介绍 工作经历 标题 工作单位 哈尔滨工业大学-计算学部 职位/职称 助理教授/师资博后/讲师 起讫时间 2023.02-至今 简单介绍 荣誉奖励 称号名称 博士研究生国家奖学金 获奖时间 2020 获奖地点 哈尔滨工业大学 简单介绍 称号名称 本科生国家奖学金 获奖时间 2013 获奖地点 东北林业大学 简单介绍 称号名称 哈尔滨工业大学计算学部第七届“光熙”国际学术论坛-特等奖 获奖时间 2020 获奖地点 哈尔滨工业大学 简单介绍 http://cs.hit.edu.cn/2020/1221/c11270a250346/page.htm 研究领域 名称 图像/视频编码 压缩感知、学习及编码 图像/视频恢复与重建 高光谱图像处理 计算机视觉 多媒体安全 团队成员 名称 赵德斌:视频编码与传输、计算机视觉、机器学习 范晓鹏:视频编码、数字孪生、计算机视觉、智能机器人、元宇宙 万照麟:图像/视频质量评价 王兴涛:点云去噪、三维重建 崔文学:图像/视频编码、计算机视觉、机器学习 论文发表 名称 期刊论文: [1] Wenxue Cui, Shaohui Liu, Feng Jiang, Debin Zhao, "Image Compressed Sensing Using Non-Local Neural Network," IEEE Transactions on Multimedia (TMM), vol. 25, pp. 816-830, 2023. (CCF B, 一区,Top Journal) (ESI高被引论文) [2] Wenxue Cui, Xiaopeng Fan, Jian Zhang, Debin Zhao, "Deep Unfolding Network for Image Compressed Sensing by Content-adaptive Gradient Updating and Deformation-invariant Non-local Modeling," IEEE Transactions on Multimedia (TMM), 2024. (CCF B, 一区,Top Journal) [3] Wenxue Cui, Xingtao Wang, Xiaopeng Fan, Shaohui Liu, Xinwei Gao, Debin Zhao, "Deep Network for Image Compressed Sensing Coding Using Local Structural Sampling," ACM Transactions on Multimedia Computing Communications and Applications (TOMM), 2024, Newly Accepted. (CCF B) [4] Xingtao Wang, Wenxue Cui, Ruiqin Xiong, Xiaopeng Fan, Debin Zhao, "FCNet: Learning Noise-free Features for Point Cloud Denoising", IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) ,2023. (CCF B, Top Journal) [5] Chen Hui, Shengping Zhang, Wenxue Cui, Shaohui Liu, Feng Jiang, Debin Zhao, "Rate-adaptive Neural Network for Image Compressive Sensing", IEEE Transactions on Multimedia (TMM), 2023. (CCF B, Top Journal) [6] Chen Ma, Junjun Jiang, Huayi Li, Wenxue Cui, Guoyuan Li, "Progressive Token Reduction and Compensation for Hyperspectral Image Representation," IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 61, pp. 1-14, 2023, Art no. 5502814, doi:10.1109/TGRS.2023.3241048. (CCF A, Top Journal) 会议论文: [1] Wenxue Cui, Xingtao Wang, Xiaopeng Fan, Shaohui Liu, Chen Ma, Debin Zhao. "G2-DUN: Gradient Guided Deep Unfolding Network for Image Compressive Sensing", Proceedings of the 31th ACM International Conference on Multimedia (ACMMM). 2023. (CCF A, Top Conference on Multimedia) [2] Wenxue Cui, Shaohui Liu, Debin Zhao. "Fast Hierarchical Deep Unfolding Network for Image Compressed Sensing", Proceedings of the 30th ACM International Conference on Multimedia (ACMMM). 2022: 2739-2748. (CCF A, Top Conference on Multimedia) [3] Wenxue Cui, Feng Jiang, Xinwei Gao, Shengping Zhang, Debin Zhao. "An efficient deep quantized compressed sensing coding framework of natural images", Proceedings of the 26th ACM International Conference on Multimedia (ACMMM). 2018: 1777-1785. (CCF A, Top Conference on Multimedia) [4] Wenxue Cui, Tao Zhang, Shengping Zhang, Feng Jiang, Wangmeng Zuo, Debin Zhao, "Convolutional Neural Networks Based Intra Prediction for HEVC," IEEE Data Compression Conference (DCC), Snowbird, UT, USA, 2017, pp. 436-436, doi: 10.1109/DCC.2017.53. (CCF B, Top Conference on Data Compression) [5] Wenxue Cui, Heyao Xu, Xinwei Gao, Shengping Zhang, Feng Jiang, Debin Zhao, "An Efficient Deep Convolutional Laplacian Pyramid Architecture for Cs Reconstruction At Low Sampling Ratios," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Calgary, AB, Canada, 2018, pp. 1748-1752, doi: 10.1109/ICASSP.2018.8461766. (CCF B, Top Conference on Audio Processing) [6] Wenxue Cui, Shaohui Liu, Feng Jiang, Yongliang Liu, Debin Zhao, "Multi-Stage Residual Hiding for Image-Into-Audio Steganography," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 2832-2836, doi: 10.1109/ICASSP40776.2020.9054033. (CCF B, Top Conference on Audio Processing) [7] Wenxue Cui, Feng Jiang, Xinwei Gao, Wen Tao, Debin Zhao, "Deep Neural Network Based Sparse Measurement Matrix for Image Compressed Sensing," IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018, pp. 3883-3887, doi: 10.1109/ICIP.2018.8451841. (CCF C) [8] Wenxue Cui, Shaohui Liu, Shengping Zhang, Yashu Liu, Heyao Xu, Xinwei Gao, Feng Jiang, Debin Zhao, "Classification Guided Deep Convolutional Network for Compressed Sensing," IEEE International Conference on Pattern Recognition (ICPR), Beijing, China, 2018, pp. 2905-2910, doi:10.1109/ICPR.2018.8545418. (CCF C) [9] Tong Zhang, Wenxue Cui, Chen Hui, Feng Jiang, "Hierarchical Interactive Reconstruction Network for Video Compressive Sensing", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, Newly Accepted.(CCF B, Top Conference on Audio Processing) [10] Tong Zhang, Wenxue Cui, et. al, "SC-HVPPNET: Spatial and Channel Hybrid Attention Video Post-processing Network with CNN and Transformer", IEEE International Conference on Multimedia and Expo (ICME), 2024, Newly Accepted.(CCF B) [11] Donghao Gu, Zhaojing Wen, Wenxue Cui, Rui Wang, Feng Jiang, Shaohui Liu, "Continuous Bidirectional Optical Flow for Video Frame Sequence Interpolation," IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 2019, pp. 1768-1773, doi: 10.1109/ICME.2019.00304. (CCF B) [12] Chen hui, Shaohui Liu, Wenxue Cui, Jinghua Zeng, Feng Jiang, Debin Zhao, "Adaptive Flexible 3D Histogram Watermarking," IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 2021, pp. 1-6, doi: 10.1109/ICME51207.2021.9428143. (CCF B) [13] Wei Zhang, Wenxue Cui, Feng Jiang, Chifu Yang, Ran Li, "Protecting the Ownership of Deep Learning Models with An End-to-End Watermarking Framework," IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Shenyang, China, 2021, pp. 76-82. (CCF C) |