张运丰
姓名 | 张运丰 |
教师编号 | 75502 |
性别 | 发明专利4999代写全部资料 |
学校 | 中国地质大学 |
部门 | 入职时间:2014-11-01 |
学位 | 毕业院校:中国地质大学(武汉) |
学历 | 出生年月:1984-03-29 |
职称 | 张运丰 (副教授) |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
个人简历 个人简介 张运丰,男,山东枣庄人,副教授,博士生导师,新加坡国立大学博士后,2014年入职材化学院,2018年5月入选“地大学者”青年优秀人才,并获得中央高校“摇篮计划”的资助。承担本科生《有机化学及实验》及《能源化学前沿》课程教学。从事锂离子电池、甲醇重整制氢-高温质子交换膜燃料电池、液流电池及电解水制氢等新能源技术关键聚合物电解质和质子交换膜材料研究。先后主持JW-KJW重点研发计划项、国家重点研发计划子课题、国家自然科学基金、湖北省自然科学基金及横向项目共计10余项。以第一/通讯作者先后在Adv. Energy Mater., Chem. Eng. J., J. Mater. Chem. A, ACS Appl. Mater. Interfaces, J. Power Sources, J. Membr. Sci., J. Phys. Chem. Lett. ChemComm.等国内外著名期刊上发表学术论文50余篇,总被引次数2300余次,H-index:29,提交申请中国发明专利27项,授权18项。担任《当代化工研究》期刊编委、中国能源学会新能源组专家、中国电子学会和中国化工学会新材料委员会会 员。担任Energy Environ. Sci., J. Mater. Chem. A, Macromolecules, J. Power Sources, J. Membr. Sci.等材料学领域重要期刊审稿人。ORC ID:https://orcid.org/my-orcid?orcid=0000-0001-6928-1742 研究领域 1. 新型高分子功能材料的设计,合成,形貌控制及相关性能研究; 2. 高性能电化学储能器件(锂离子电池、燃料电池、钠电池等)聚合物电解质材料; 3. 新能源储存与转化(液流电池、电解水制氢及氢燃料电池)质子交换膜材料。招生倾向(欢迎有机、无机、高分子及电化学方向的学生报考硕士和博士研究生) 1. 具有较好的有机合成经验(Experience of Organic Synthesis); 2. 或具有较好的电化学基础知识(or Electrochemical Education background); 3. 或具有较好的高分子化学基础知识(or Macromolecular Education background)。学生获奖 1. 刘 园 2016年 硕士研究生国家奖学金; 2. 刘旭坡 2017年 博士研究生国家奖学金; 3. 刘旭坡 2018年 校级优秀博士论文; 4. 何 阳 2020年 硕士研究生国家奖学金; 5. 何 阳 2021年 中国地质大学“研究生标兵”; 6. 鲍 伟 2022年 硕士研究生国家奖学金; 7. 胡振原 2022年 博士研究生国家奖学金; 8. 胡振原 2023年 博士研究生国家奖学金。科研项目 1. 陕煤研究院秦岭计划,SMYJY202300007C,2023.09-2025.12,主持; 2. 陕煤研究院秦岭计划,SMYJY202300011C,2023.09-2024.12,主持; 3. JW-KJW,2020.06-2023.06,主持; 4. 国家重点研发计划子课题(2018YFB1502903),2019.01-2022.12,主持; 5. 国家自然科学青年基金项目(21603197),2017.01-2019.12,主持; 6. 湖北省自然科学基金青年基金项目(2016CFB181),2017.01-2018.12,主持; 7. 中央高校基本科研业务费专项(CUG150620),2015.4-2018.3, 主持; 8. 中央高校基本科研业务费专项(摇篮计划)(CUGL180403),2018.1-2020.12,主持;代表性成果(第一/通讯)1. Surface modification strategies for an improved interfacial compatibility between LLZO and a polymer substrate for applications in high-performance solid-state Li-metal batteries, Journal of Power Sources, 2024, 592: 233969.2. Multifunctional single-ion conductor-integrated PEO-based solid polymer electrolytes endow highly stable and dendrite-free lithium metal batteries, Next Materials, 2024, 2: 100090.3. Highly conductive and nonflammable boron-based gel type single ion conducting electrolyte membranes toward high-safety and dendrite-free lithium metal batteries, Journal of Energy Storage, 2024, 76: 109594.4. Single-ion conductors functionalized graphene oxide enabling solid polymer electrolytes with uniform Li-ion transport toward stable and dendrite-free lithium metal batteries, Chemical Engineering Journal, 2023, 144932.5. Siloxane-type single-ion conductors enable composite solid polymer electrolyte membranes with fast Li+ transporting networks for dendrite-proof lithium-metal batteries, Chemical Engineering Journal, 2023, 468, 143857.6. Highly conductive and mechanically robust single-ion conducting polymer electrolyte membranes with a high concentration of charge carriers for dendrite-proof lithium metal batteries, Journal of Membrane Science, 2023, 688, 122118.7. A multifunctional polymeric additive with a synergistic effect for high-performance lithium-ion batteries, Chemical Communications, 2023, 59, 12, 1633-1636.8. A Brush-like Li-Ion Exchange Polymer as Potential Artificial Solid Electrolyte Interphase for Dendrite-Free Lithium Metal Batteries. The Journal of Physical Chemistry Letters, 2023, 14: 16-23.9. Flexible, high-temperature-resistant, highly conductive, and porous siloxane-based single-ion conducting electrolyte membranes for safe and dendrite-free lithium-metal batteries, Journal of Membrane Science, 2023, 668: 121275.10. Imidazolium-Type Poly(ionic liquid) Endows the Composite Polymer Electrolyte Membrane with Excellent Interface Compatibility for All-Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14(50): 55664–55673. 11. Flexible, high-temperature-resistant, highly conductive, and porous siloxane-based single-ion conducting electrolyte membranes for safe and dendrite-free lithium-metal batteries, Journal of Membrane Science, 2023, 668: 121275.12. Imidazolium-Type Poly(ionic liquid) Endows the Composite Polymer Electrolyte Membrane with Excellent Interface Compatibility for All-Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14(50): 55664–55673.13. Hydroxyl-rich single-ion conductors enable solid hybrid polymer electrolytes with excellent compatibility for dendrite-free lithium metal batteries. Journal of Membrane Science, 2022, 657: 120666.14. In-situ construction of high-temperature-resistant 3D composite polymer electrolyte membranes towards high-performance all-solid-state lithium metal batteries, Journal of Power Sources, 2022, 548: 23205215. New insights into designation of single-ion conducting gel polymer electrolyte for high-performance lithium metal batteries, Journal of Membrane Science, 2022, 647(5): 120287 16. Poly(ionic liquid)-functionalized graphene oxide towards ambient temperature operation of all-solid-state PEO-based polymer electrolyte lithium metal batteries, Chemical Engineering Journal, 2022, 437: 135420.17. Enabling interfacial stability via 3D networking single ion conducting nano fiber electrolyte for high performance lithium metal batteries, Journal of Power Sources, 2021, 490(8), 229545. 18. Highly porous single ion conducting membrane via a facile combined “structural self-assembly” and in-situ polymerization process for high performance lithium metal batteries, Journal of Membrane Science, 2021, 636: 119601. 19. Effective suppressing lithium dendrite growth via an es-LiSPCE single ion conducting nano fiber membrane, Journal of Materials Chemistry A, 2020, 8(5): 2518-2528. 20. Lithiated polyanion supported Li1.5Al0.5Ge1.5(PO4)3 composite membrane as single-ion conducting electrolyte for security and stability advancement in lithium metal batteries, Journal of Membrane Science, 2020, 118926.21. Single-ion Conducting Electrolyte based on Electrospun Nanofibers for High-performance Lithium Batteries, Advanced Energy Materials, 2019, 1803422 (内封面文章)22. Highly porous single ion conducting polymer electrolyte for advanced lithium-ion batteries via facile water-induced phase separation process." Journal of Membrane Science, 2018, 568: 22-29.23. Highly porous single-ion conductive composite polymer electrolyte for high performance Li-ion batteries. Journal of Power Sources 2018, 397, 79-86. 24. Semi-Interpenetrating Polymer Networks toward Sulfonated Poly(ether ether ketone) Membrane for High Methanol Concentration Direct Methanol Fuel Cell, Chinese Chemical Letters, 2019, 30(2): 299-304.25. Semi-interpenetrating Polymer Networks Membranes from SPEEK and BPPO for High Concentration DMFC, ACS Applied Energy Materials, 2018, 1, 5463-5473.26. Enhanced performance of sulfonated poly (ether ether ketone) membranes by blending fully aromatic polyamide for practical application in direct methanol fuel cells (DMFCs), International Journal of Hydrogen Energy, 2017, 42(47): 28567-28577. 27. Superhydrophobic bromomethylated poly(phenylene oxide) as a multifunctional polymer filler in SPEEK membrane towards neat methanol operation of direct methanol fuel cells, Journal of Membrane Science, 2017, 544: 58-67.28. Electrospun Multifunctional Sulfonated Carbon Nanofibers for Design and Fabrication of SPEEK Composite Proton Exchange Membranes for Direct Methanol Fuel Cell Application, International Journal of Hydrogen Energy, 2017, 42(15): 10275-10284.29. A mechanically robust porous single ion conducting electrolyte membrane fabricated via self-assembly, Journal of Membrane Science, 2016, 507: 99-106.30. Toward ambient temperature operation with all-solid-state lithium metalbatteries with a sp3 boron-based solid single ion conducting polymer electrolyte, Journal of Power Sources, 2016, 306: 152-161. 31. Influence of chemical microstructure of single ion polymeric electrolyte membranes on performance of lithium ion batteries, ACS Applied Materials & Interfaces, 2014, 6(20):17534- 42. 教育经历 [1] 2010.9-2013.6 中国地质大学(武汉) | 岩石矿物材料学 | 博士学位 | 博士研究生 [2] 2008.9-2010.6 中国地质大学(武汉) | 化学 | 硕士学位 | 硕士研究生毕业 工作经历 [1] 2014.11-至今 中国地质大学(武汉) | 材料与化学学院 | 副教授 [2] 2013.9-2014.10 新加坡国立大学 | 化学系 | 博士后 [3] 2011.9-2013.9 新加坡国立大学 | 化学系 | 研究助理 社会兼职 [1] 2017.11-至今 中国化工学会新材料委员会会员 [2] 2017.9-至今 中国电子学会专家 [3] 2016.5-至今 中国能源学会新能源组专家 研究方向 [1] 新能源储存与转化技术(锂离子电池、液流电池及高温燃料电池); [2] 高性能电化学储能器件(锂离子电池、锂硫电池、钠电池等)电解质材料设计; [3] 新型高分子功能材料的设计,合成,形貌控制及相关性能研究; 联系方式 [1] 邮编: 430074 [2] 传真: [3] 通讯/办公地址: 武汉市洪山区鲁磨路388号 [4] 办公室电话: [5] 移动电话: [6] 邮箱: zhangyf329@gmail.com |