朱红涛
姓名 | 朱红涛 |
教师编号 | 74766 |
性别 | 发明专利4999代写全部资料 |
学校 | 中国地质大学 |
部门 | 联系方式:htzhu@cug.edu.cn |
学位 | 学历:博士研究生 |
学历 | 毕业院校:中国地质大学(武汉) |
职称 | 朱红涛 (教授) |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
个人简历 朱红涛,男,博士、博士后,教授,博士生导师,专业方向为层序地层学及其模拟、沉积学、地震沉积学、源-汇系统研究。目前主要从事石油与天然气地质学的教学和科研工作,兼任中国石油学会石油地质专业委员会委员、湖北省石油协会常务理事、美国石油地质学家协会(AAPG)、美国地球物理协会(SEG)会员、国际沉积地质协会(IAS)会员,担任地球科学(中、英文)编委、教育部留学回国人员科研启动基金评审专家、国内外多种学术期刊审稿人。多年来,坚持传统学科与新兴学科相结合,定性-定量相结合,一直围绕“构造-古地貌-层序-沉积-储层”一体化研究方向开展研究工作,成果主要体现在: 1)陆相盆地层序构型多元化体系构建; 2)层序-沉积过程定量分析; 3)源-渠-汇耦合理论及其地震信息提取、分析;4)源-汇-岩-储一体化研究;5)地震沉积学;6)地质体雕刻技术研究。目前在AAPG Bulletin、Sedimentary Geology、Geophysics、Marine and Petroleum Geology等国内外刊物上发表学术论文100余篇,其中国际SCI 38篇,作为召集人负责AAPG和SEG联合举办的Interpretation刊物上组织源-汇系统专题和地球科学上组织源-汇系统中文专辑(国内一个关于源-汇的专辑),联合出版专著《陆相断陷盆地源汇体系控砂原理与应用》(国内第一个关于源-汇系统的专著)。先后主持国家自然科学面上基金、青年基金、教育部科技项目霍英东教育基金会、教育部科技项目留学回国人员科研启动基金、国家油气重大专项和油田科技攻关项目等课题研究,连续获得2018、2019年中海石油(中国)有限公司勘探领域优秀外协团队。一、研究兴趣Research Interests 层序地层学及其模拟 沉积学 地震沉积学 源-汇系统二、教育、工作经历 Professional Experience 2014.01-至今, 中国地质大学(武汉),资源学院石油系,教授、博士生导师 2008.12-2013.12,中国地质大学(武汉),资源学院石油系,副教授 2011.12-2013.01,美国德州大学奥斯汀分校,BEG,访问学者 2006.06-2008.02,澳大利亚科学与工业研究院(CSIRO),博士后 2005.07-2008.11,中国地质大学(武汉),资源学院石油系,讲师 2000.09-2005.07, 博士,中国地质大学(武汉),矿产普查与勘探专业 1996.09-2000.07, 本科,中国地质大学(武汉),石油天然气地质专业三、教学My Teachings 本科生:《层序地层学》,硕士生:《层序地层学》、《地震信息分析及应用》,博士生:《专业英语写作与交流》 、《能源矿产理论和勘查前沿》,留学生:《层序地层学》四、指导研究生(及博士后) 指导博士后(3人)、博士研究生11人(毕业5人,在读6人)、硕士生32人(毕业27人,在读5人), 指导国际留学生3人.五、教学获奖 2017年,中国地质大学(武汉)2016年度“十佳班主任”; 2015年,中国地质大学(武汉)第五届“研究生的良师益友”称号; 2013年,中国地质大学(武汉)第二届朱训青年教师教育奖励基金; 2010年,中国地质大学(武汉)第九届十大杰出青年; 2010年,中国地质大学(武汉)第六届青年教师教学优秀奖.六、科研项目浅水湖盆河湖交互沉积体系及其成因机理研究(No. 42172127),国家自然科学基金面上项目,2022.01-2025.12,主持.渤海海域晚始新世始末构造变革响应界面厘定及其油气地质意义(No. 41872149),国家自然科学基金面上项目,2019.01-2022.12,主持.陆相断陷盆地低-高角度同沉积断层层序-沉积充填响应过程、样式及差异(No. 41572084),国家自然科学基金面上项目,2016.01-2019.12,主持.陆内克拉通盆地“盆地充填”与层序发育关系的模拟研究(No. 40702024),国家自然科学基金青年项目,2008.01-2010.12,主持,“卫星”洼陷薄层砂体预测及其内部结构特征刻画(No. 132020),教育部科技项目霍英东基金,2012.01-2014.12,主持.陆内克拉通盆地层序“溯源退积”机理的模拟研究(No. 2009022014),教育部科技项目留学回国人员科研启动基金,2009.01-2010.12,主持.渤海南部古近系优质储层成因机理、综合评价技术与有利勘探方向研究(No. 2016ZX05024-003-007),国家科技重大专项大型油气田及煤层气开发,2016.01-2020.06,主持.渤海内物源区古物源恢复及其演化规律研究服务,中海石油(中国)有限公司天津分公司,2020.09-2022.10,主持. 莱州湾凹陷层序格架、沉积体系与岩性地层圈闭预测,中海石油(中国)有限公司天津分公司,2021.05-2022.10,主持.西湖凹陷西部斜坡岩性油气藏形成条件和勘探领域方向研究,中海石油(中国)有限公司上海分公司,2021.03-2022.6,主持.白云凹陷大中型构造-岩性圈闭发育特征及成藏条件研究,中海石油(中国)有限公司深圳分公司,2019.11-2021.06,主持.流沙港组沉积充填特征及优质储层分布规律研究,中海石油(中国)有限公司湛江分公司,2020.05-2021.12,主持.黄岩区花港组沉积相及重点区砂体刻画,中海石油(中国)有限公司上海分公司,2020.11-2021.12,主持. 玉果、吐鲁番油田精细油藏描述研究, 中国石油天然气股份有限公司吐哈油田分公司,2020.07-2021.06,主持.重点构造区多道地震资料特殊处理,广州海洋调查局,2020.09-2021.08,主持.黄河口凹陷古近系大型砂砾岩体沉积体系研究与优质储层预,中海石油(中国)有限公司天津分公司,2019.08-2020.12,主持.黄河口西南环古近系隐蔽油气藏描述,中海石油(中国)有限公司天津分公司,2019.04-2020.03,主持.白云凹陷大中型构造-岩性圈闭发育特征及成藏条件研究,中海石油(中国)有限公司深圳分公司,2019.11-2021.06,主持.陆丰西地区古近纪构造演化与沉积体系差异性研究,中海石油(中国)有限公司深圳分公司,2019.03-2019.12,主持.乐东-陵水凹陷中新统陆架-陆坡体系演化与优质储层分布研究,中海石油(中国)有限公司湛江分公司,2019.03-2019.12,主持.西湖凹陷天台斜坡带地震沉积学及有利区带预测研究,中海石油(中国)有限公司上海分公司,2019.03-2019.12,主持.火焰山油田葡4、葡6块、恰勒坎油田精细油藏描述,中石化吐哈分公司,2019.05-2019.12,主持.团结亭及周边地区地震沉积学研究及储层预测,中海石油(中国)有限公司,2017.10-2018.12,主持.渤东地区新近系沉积充填演化与有利储层预测,中海石油(中国)有限公司天津分公司,2016.07-2018.12,主持.渤中12构造区东营组沉积体系及沉积异常体圈闭评价,中海石油(中国)有限公司天津分公司,2014.07-2015.11,主持.黄河口凹陷重点区带古近系储层控制因素及优质储层发育规律研究,中海石油(中国)有限公司天津分公司,2013.06-2014.12,主持.渤中西环古近系高精度沉积体系分析与有利储层预测,中海石油(中国)有限公司天津分公司,2009.06-2010.12,主持.澳大利亚西北陆架油气成藏条件及勘探潜力研究,国家科技重大专项大型油气田及煤层气开发,2011.01-2015.12,负责层序专题;南海东部海域已证实的富烃凹陷再评价及新领域勘探方向,国家科技重大专项大型油气田及煤层气开发,2009.01-2010.12,负责层序专题;南海东部海域已证实富烃凹陷构造-沉积体系、成藏主控因素及综合评价 ,国家科技重大专项大型油气田及煤层气开发,2011.01-2014.12,负责层序专题;珠一坳陷不同类型凹(洼)陷古近系的对比分析和整合研究,中海石油(中国)有限公司深圳分公司,2016.01-2018.02,第二负责人.西非-南美海域重点区烃源岩识别与预测技术研究,国家科技重大专项,2018.04-2020.06,第二负责人.被动陆缘盆地海相烃源岩地质、地球物理预测技术研究,中海石油(中国)有限公司北京研究中心,2015.08-2017.08,第二负责人.白云凹陷恩平组大型储集体研究,中海石油(中国)有限公司北京研究中心,2014.07-2015.12,第二负责人.七、学术论文Zhiwei Zeng, *Hongtao Zhu, Hongliu Zeng, Xianghua Yang, Changgui Xu. Seismic sedimentology analysis of fluvial-deltaic systems in a complex strike-slip fault zone, Bohai Bay Basin, China: Implications for reservoir prediction. Journal of Petroleum Science and Engineering, 2022, 208, 109290. *Zhiwei Zeng, Hongtao Zhu. Modern Dryland Source-to-Sink System Segments and Coupling Relationships from Digital Elevation Model Analysis: A Case Study from the Mongolian Altai. Remote Sensing, 2022, 14, 1202. Xiaobo Zheng, *Hongtao Zhu, Qianghu Liu. Seismic geomorphology applied to sediment dispersal patterns and an analysis of the stages of channel-lobe systems in the Yinggehai Basin, northern South China Sea. Marine and Petroleum Geology, 2022,139, 105602. Qian Zhao, *Hongtao Zhu, Xinhuai Zhou, Qianghu Liu, Hua Cai, Yinshan Chang. Tidal sand ridges seismic identification and its application in the Xihu Depression, East China Sea Shelf basin: Enlightenment to hydrocarbon exploration. Journal of Petroleum Science and Engineering, 2022, 212, 110246.Zhiwei Zeng, Hongtao Zhu, Xianghua Yang, Xiurong Cao. Three-dimensional seismic analysis of a polygonal fault system (PFS) in the Northern Carnarvon Basin, Australia: Implications for fluid flow migration and gas hydrate system. Journal of Petroleum Science and Engineering, 2022, 215, 110602.Hongtao Zhu, Zhiwei Zeng, Xienong Xie, Xiaomin Zhu, Changgui Xu, Hongliu Zeng. Introduction to special section: Mapping mixed clastic and carbonate depositional systems in lacustrine basins. Interpretation, 2021, 9(2): SCi.Qian Zhao, *Hongtao Zhu, Xiangtao Zhang, Qianghu Liu, Xinwei Qiu, Min Li. Geomorphologic reconstruction of an uplift in a continental basin with a source-to-sink balance: An example from the Huizhou-Lufeng uplift, Pearl River Mouth Basin, South China sea. Marine and Petroleum Geology, 2021,128, 104984. Qian Zhao, *Hongtao Zhu, Xinhuai, Zhou, Qianghu Liu, Hua Cai, Weizhong Gao. Continental margin sediment dispersal under geomorphic control in Xihu Depression, East China Sea Shelf Basin. Journal of Petroleum Science and Engineering, 2021, 205, 108738. Sen Li, *Hongtao Zhu, Xianghua Yang, Changgui Xu. Seismic geomorphology, architecture and genesis of unusual confined and semiconfined sedimentary units on the northern slope of the Bonan uplift, Bohai Bay Basin, China. Journal of Petroleum Science and Engineering, 2021, 196, 107696. Sen Li, *Hongtao Zhu, Jie Liang, Xiaofeng Du, Qingbin Wang, Tingting Yao, Hongliu Zeng. Mixed siliciclastic-carbonate deposition and cyclical evolution of the Upper Shahejie Formation and its impact on reservoir development in the Eocene Huanghekou Sag, Bohai Bay Basin, East China. Interpretation, 2021, 9(2): SC17–SC30.Hongtao Zhu, Zhiwei Zeng, Hongliu Zeng, Changgui Xu. 3D seismic data attribute-based characterization of volcanic reservoirs in the BZ34-9 Block, Bohai Bay Basin, eastern China. Geophysics, 2020, 85(3), IM1–IM13. Zhiwei Zeng, *Hongtao Zhu, Xianghua Yang, Hongliu Zeng, Gongcheng Zhang. Multistage progradational clinoform-set characterisation and evolution analysis of the Early Oligocene in the Baiyun Sag, Pearl River Mouth Basin, South China Sea. Marine and Petroleum Geology, 2020, 112, 104048.Hongtao Zhu, Changgui Xu, Xiaofeng Du, Xiaomin Zhu, Zaixing Jiang, Keyu Liu, Changmin Zhang, Hao Liu, Qianghu Liu, Hongliu Zeng. Introduction to special section: Mapping of depositional systems — Bohai Bay Basin, Eastern China. Interpretation, 2020, 8(2): SFi.Zhongheng Sun, *Hongtao Zhu, Changgui Xu, Xianghua Yang, Xiaofeng Du. Reconstructing provenance interaction of multiple sediment sources in continental down-warped lacustrine basins: An example from the Bodong area, Bohai Bay Basin, China. Marine and Petroleum Geology, 2020,113, 104142.Li, Sen, *Zhu, Hongtao, Xu, Changgui, Zeng, Hongliu, Liu, Qianghu, Yang, Xianghua. Seismic-based identification and stage analysis of overlapped compound sedimentary units in rifted lacustrine basins: An example from the Bozhong sag, Bohai Bay Basin, China. AAPG Bulletin, 2019, 102(10), 2521-2543. Zeng, Zhiwei, *Zhu, Hongtao, Yang, Xianghua, Zeng, Hongliu, Hu, Xiaolin, Xia, Chenchen. The Pangaea Megamonsoon records: Evidence from the Triassic Mungaroo Formation, Northwest Shelf of Australia. Gondwana Research, 2019, 69, 1–24.Zeng, Zhiwei, *Zhu, Hongtao, Yang, Xianghua, Zeng, Hongliu, Xia, Chenchen, Chen, Ying. Using seismic geomorphology and detrital zircon geochronology to constrain provenance evolution and its response of Paleogene Enping Formation in the Baiyun Sag, Pearl River Mouth Basin, South China sea: Implications for paleo-Pearl River drainage evolution. Journal of Petroleum Science and Engineering, 2019, 177, 663-680. Zhiwei Zeng, *Hongtao Zhu, Lianfu Mei, Jiayuan Du, Hongliu Zeng, Xinming Xu, Xiaoyun Dong. Multilevel source-to-sink (S2S) subdivision and application of an ancient uplift system in South China Sea: Implications for further hydrocarbon exploration. Journal of Petroleum Science and Engineering, 2019, 181, 1062204. Zhiwei Zeng, *Hongtao Zhu, Xianghua Yang, Gongcheng Zhang, Hongliu Zeng. Three-dimensional imaging of Miocene volcanic effusive and conduit facies: Implications for the magmatism and seafloor spreading of the South China Sea. Marine and Petroleum Geology, 2019, 109, 193-207Liu, Qianghu, Zhu, Hongtao, Zhu, Xiaomin, Zeng, Hongliu, Li, Shunli, Xiu, Zhu. Proportional relationship between the flux of catchment-fluvial segment and their sedimentary response to diverse bedrock types in subtropical lacustrine rift basins. Marine and Petroleum Geology, 2019, 107, 351-364. Qianghu Liu, *Hongtao Zhu, Xiaomin Zhu, Hongliu Zeng, Shunli Li, Xiu Zhu. Proportional relationship between the flux of catchment-fluvial segment and their sedimentary response to diverse bedrock types in subtropical lacustrine rift basins. Marine and Petroleum Geology, 2019, 102, 351-364.5. Zhu, Hongtao, Zeng, Zhiwei, Zeng, Hongliu, Xu, Changgui, Xiao, Fan. Use of seismic-based new rose diagram to determine the major sediment-supply direction of progradational systems. Geophysics, 2019, 84(3), IM11–IM18.Abbas, Ayesha, Zhu, Hongtao, Zeng, Zhiwei, Zhou, Xinhuai. Sedimentary facies analysis using sequence stratigraphy and seismic sedimentology in the Paleogene Pinghu Formation, Xihu Depression, East China Sea Shelf Basin. Marine and Petroleum Geology, 2018, 93, 287-297.Zhu, Hongtao, Zhu, Xiu, and Chen, Honghan. Seismic Characterization of Hypogenic Karst Systems Associated with Deep Hydrothermal Fluids in the Middle-Lower Ordovician Yingshan Formation of the Shunnan Area, Tarim Basin, NW China. Geofluids, 2017, 2017 (2) :1-13.Sun, Zhongheng, Zhu, Hongtao, Xu, Changgui, Yang, Xianghua, Du, Xiaofeng, Wang, Qingbin, and Qiao, Jinyang. Pore Fluid Evolution Influenced by Volcanic Activities and Related Diagenetic Processes in a Rift Basin: Evidence from the Paleogene Medium-Deep Reservoirs of Huanghekou Sag, Bohai Bay Basin, China. Geofluids, 2017, 5(4): STi-STii.Zhu, Hongtao, Ron Steel, Zhu, Xiaomin, Liu, Keyu, Zeng, Hongliu, Jiang, Zaixing, Wood, Lesli, and Olariu, Cornel. Introduction to special section: Source-to-sink system analysis of petroliferous and other sedimentary basins. Interpretation, 2017, 5(4): STi-STii.Zhu, Xiu, Zhu, Hongtao, Zeng, Hongliu, and Liu, Qianghu. Link between bedrock lithology and sedimentary systems in Lake Erhai Basin, southwest China, with respect to source to sink. Interpretation, 2017, 5(4): ST53-ST64.Cheng, Yuan, Zhu, Hongtao, Zeng, Hongliu, Liu, Qianghu, and Zhu, Xiu. Differential source-to-sink system analysis for three types of stepped terrains in China. Interpretation, 2017, 5(4): ST1-ST9.Zhu, Hongtao, Li, Sen, Shu, Yu, Yang, Xianghua, Mei, Lianfu,2016. Applying seismic geomorphology to delineate switched sequence stratigraphic architecture in lacustrine rift basins: An example from the Pearl River Mouth Basin, northern South China Sea. Marine and Petroleum Geology, 78,785-796.Liu, Qianghu, *Zhu, Hongtao, Shu, Yu, Zhu, Xiaomin, Yang, Xianghua, Chen, Liang, Tian, Mingxuan, Geng, Mingyang, 2016. Provenance identification and sedimentary analysis of the beach and bar systems in the Palaeogene of the Enping Sag, Pearl River Mouth Basin, South China Sea. Marine and Petroleum Geology, 70, 251-272.Liu, Qianghu, *Zhu, Hongtao, Shu, Yu, Zhu, Xiaomin, Yang, Xianghua, Tian, Mingxuan, Chen, Hehe, Yang, Shufan. Effects of low- to high-angle normal faults on sedimentary architectures in the Eocene Wenchang Formation, Enping Sag, Pearl River Mouth Basin, South China Sea. Australian Journal of Earth Sciences, 2016, 63(7), 903-922.Zhu, Hongtao, Yang, Xianghua, Liu, Keyu, Zhou, Xinhuai, 2014. Seismic-based sediment provenance analysis in continental lacustrine rift-basins: an example from the Bohai Bay Basin, China, AAPG Bulletin, 98(10), 1995-2018.Zhu, Hongtao, Yang, Xianghua, Zhou, Xinhuai, Liu, Keyu, 2014. Three-dimensional facies architecture analysis using sequence stratigraphy and seismic sedimentology: Example from the Paleogene Dongying Formation in the BZ3-1 Block of the Bozhong Sag, Bohai Bay Basin, China. Marine and Petroleum Geology, 51, 20-33.Zhu, Hongtao, Zeng, Hongliu, Liu, Keyu, 2013. A Quantitative simulation study of asymmetrical tectonic subsidence control on non-synchronous sequence stacking patterns of Eocene lacustrine sediments in Bohai Bay Basin, China. Sedimentary Geology, 294: 328-341.Zhu, Hongtao, Liu, Keyu, Yang, Xianghua, Liu, Qianghu, 2013. Sedimentary controls on the sequence stratigraphic architecture in intra-cratonic basins: An example from the Lower Permian Shanxi Formation, Ordos Basin, northern China. Marine and Petroleum Geology, 45, 42-54.Zhu, Hongtao, Zeng, Hongliu, Yang, Xianghua, He, Yawen, 2013. Seismic interpretation of tectonic and paleogeomorphologic controls on sediment dispersal patterns in a continental rift basin: a case study from the Bohai Bay Basin, China. Interpretation, 1(1): 1-13.Zhu, Hongtao, Liu, Qianghu, Liu, Zhongbao, 2013. Quantitative simulation on the retrogradational sequence stratigraphic pattern in intra-cratonic basins using physical tank experiment and numerical simulation. Journal of Asian Earth Sciences, 66: 249-257.Zhu, Hongtao, Chen, Kaiyuan, Liu, Keyu, He, Sheng, 2008. A sequence stratigraphic model for reservoir sand-body distribution in the Lower Permian Shanxi Formation in the Ordos Basin, northern China. Marine and Petroleum Geology, 25,731-743.Zhu, Hongtao, Liu, Keyu, Chen, Kaiyuan, Li, Min, Huang, Shengbing, 2009. Differential Interformational Velocity Analysis as an Effective Direct Hydrocarbon Indicator under velocity reversal conditions, an example from the anomalous high temperatured and over-pressured DF1-1 Gas Field in the Yinggehai Basin, South China Sea. Petroleum Science, 6(4) : 339-346.Zhu, Hongtao, Du, Yuansheng, Liu, Keyu, Yan, Jiaxin, Xu, Yajun, Yang, Ping, Liu, Xinyu, 2008. Sequence stratigraphic delineation and correlation of the Dongying Formation in the nearshore and adjacent sea area, Bohai Bay Basin. Journal of China University of Geosciences, 19(1): 54-64. 朱红涛, 朱筱敏, 刘强虎, 徐长贵, 杜晓峰. 层序地层学与源−汇系统理论内在关联性与差异性. 石油与天然气地质, 2022, 43(4):763-776. 周子强, 朱红涛*, 刘强虎, 刘圣. 南海北部湾盆地协调-非协调供源样式与沉积交互作用耦合响应:以涠西南凹陷C洼为例. 地球科学, 2022, 47(7): 2521-2535.杨超, *朱红涛, 牛成民, 杜晓峰, 刘强虎, 孙中恒. 陆相盆地浅水背景河湖交互特征及其模式. 地球科学, 2021, 46(5):1771-1782.陆威延, *朱红涛, 徐长贵, 张向涛, 杜晓峰, 杜家元, 李森. 源-汇系统级次划分方法及应用. 地球科学, 2020, 45(4):1327-1336.刘强虎, *朱红涛, 杜晓峰, 薛永安, 杨香华, 杨海风, 石文龙, 周子强. 渤海海域砂砾岩体沉积响应进展及热点. 地球科学, 2020, 45(5):1676-1705.叶子倩, *朱红涛, 杜晓峰, 杨香华, 姚婷婷, 李森. 渤海湾盆地黄河口凹陷古近系沙一段混积岩发育特征及沉积模式. 地球科学, 2020, 45(10):3731-3745.姚婷婷, *朱红涛, 杨香华, 石文龙, 牛成民. 渤海湾盆地黄河口凹陷沙河街组白云岩成因机理. 地球科学, 2020, 45(10):3567-3578.杜晓峰, 徐长贵, 朱红涛, 解习农, 朱筱敏, 刘可禹, 姜在兴, 曾洪流. 陆相断陷盆地陆源碎屑与碳酸盐混合沉积研究进展. 地球科学, 2020, 45(10): 3509-3526.朱红涛, 刘可禹, 朱筱敏, 姜在兴, 曾洪流, 陈开远. 陆相盆地层序构型多元化体系. 地球科学, 2018, 43(3): 770-785.朱红涛, 徐长贵, 朱筱敏, 曾洪流, 姜在兴, 刘可禹. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 2017, 42(11): 1851-1870.朱秀, *朱红涛, 曾洪流, 杨香华. 云南洱海现代湖盆源-汇系统划分、特征及差异. 地球科学, 2017, 42(11): 2010-2024. 曾智伟, *朱红涛, 杨香华, 夏晨晨, 陈莹, 韩银学. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化. 地球科学, 2017, 42(11): 1936-1954.肖凡, *朱红涛, 徐长贵, 杜晓峰, 官大勇, 李森, 2017. 利用前积角“玫瑰花”图判断前积体主物源方向. 石油地球物理勘探, 52(1): 181-188.魏小松, *朱红涛, 徐长贵, 杜晓峰, 官大勇, 刘鸿洲, 2017. 基于正演模拟技术的薄互层岩性体尖灭点解释外推——以渤中凹陷12构造区为例. 地质科技情报, 36(2): 265-271.朱红涛, 李森, 刘浩冉, 舒誉, 梅廉夫, 杨香华, 2016. 陆相断陷湖盆迁移型层序构型及意义: 以珠Ⅰ坳陷古近系文昌组为例.地球科学, 41(3): 361-372.朱秀, *朱红涛, 陈红汉, 祁磊, 李培军, 云露, 2016. 塔里木盆地顺南地区中-下奥陶统深成岩溶特征. 石油与天然气地质, 37(5): 653-662.刘强虎, *朱红涛, 舒誉, 朱筱敏, 杨香华, 付 鑫, 2015. 珠江口盆地恩平凹陷古近系恩平组物源体系及其对滩坝的控制. 石油学报, 36(3): 286-299.刘浩冉, *朱红涛, 施和生, 舒誉, 付 鑫, 刘依梦, 2015. 珠江口盆地惠州凹陷迁移型层序特征及其意义.地球科学, 40(5): 840-850.夏晨晨, *朱红涛, 杨香华, 黄众, 庄文娟, 曹秀荣, 曾智伟, 2015. 澳大利亚North Carnarvon盆地晚三叠世Mungaroo组大型浅水辫状河三角洲沉积充填特征及模式. 中南大学学报(自然科学版), 46(8): 2983-2991.朱红涛, 刘依梦, 王永利, 周心怀, 杨香华, 2014. 渤海湾盆地黄河口凹陷BZ34-9区带火山岩三维刻画及火山喷发期次. 地球科学, 39(9):1309-1316.龚丽, *朱红涛, 舒誉, 付鑫, 杨香华, 刘昭茜, 2014. 珠江口盆地恩平凹陷文昌组层序格架中中-深湖相烃源岩空间展布规律及发育模式. 地球科学, 39(5):546-556.刘依梦, *朱红涛, 施和生, 舒誉, 刘强虎, 付 鑫, 2014. 珠江口盆地恩平凹陷古近系文昌组相对湖平面变化曲线的定量构建. 油气地质与采收率, 21(4):37-41.朱红涛, 杨香华, 周心怀, 李建平, 王德英, 李敏, 2013. 基于地震资料的陆相湖盆物源通道特征分析:以渤中凹陷西斜坡东营组为例. 地球科学, 38(1): 121-129.朱红涛, 刘依梦, Keyu Liu, 刘强虎, 2013. 陆内克拉通盆地“溯源退积”层序构型构建——以鄂尔多斯盆地山西组为例. 地球科学, 38(4): 776-782.朱红涛, Keyu Liu, 杨香华, 舒誉, 吴静, 李敏, 2012. 陆相湖盆层序构型及其岩性预测意义-以珠江口盆地惠州凹陷为例. 地学前缘, 19(1): 32-39.朱红涛, 杨香华, 周心怀, 李建平, 王德英, 李敏, 2011. 基于层序地层学和地震沉积学的高精度三维沉积体系——以渤中凹陷西斜坡BZ3-1区块东营组为例. 地球科学, 36(6): 1073-1084.朱红涛, 李敏, Keyu Liu, 刘强虎, 黄众, 杜文波, 2010. 陆内克拉通盆地层序地层构型及其控制因素. 地球科学, 35(6): 1035-1040.朱红涛, Keyu Liu, 杜远生, 李敏, 王继立, 2009. 可容纳空间转换系统的定量模拟及新认识. 地球科学, 34(5): 819-828.朱红涛, 庄文娟, 黄众, 刘强虎, 2012. 地球化学资料定量识别层序地层单元技术综述. 地质科技情报, 31(6): 67-73.朱红涛, 黄众, 刘浩冉, Keyu Liu, 刘强虎, 2011. 利用测井资料识别层序地层单元技术与方法进展及趋势. 地质科技情报, 30(4): 29-36.朱红涛, Keyu Liu, 杜远生, 何生, 陈令, 2008. 运用层序定量模拟探讨层序叠加模式对非均一构造沉降活动的响应. 沉积学报, 26(5): 753-761.朱红涛, 史军, Keyu Liu, 陈开远, 2008. 层序地层控制因素的多变量系统.油气地质与采收率, 15(4),5-9.朱红涛, 陈开远, Keyu Liu, 何生, 2007. 鄂尔多斯盆地东北部山西组的河流相沉积证据及其天然气勘探意义. 天然气工业, 27(12):67-69.朱红涛, Keyu Liu, 杜远生, 何生, 2007. 层序地层学模拟研究进展及趋势.地质科技情报, 26(5): 27-34.刘强虎, *朱红涛, 杨香华, 舒誉, 黄众, 2013. 珠江口盆地恩平凹陷古近系文昌组地震层序地层单元定量识别. 中南大学学报(自然科学版), 44(3):1076-1082.庄文娟, *朱红涛, 杨香华, 黄众, 李丹, 2013. 三叠纪巨型季风在澳大利亚西北大陆架North Carnarvon盆地的沉积记录. 地质科技情报, 32(6):42-47.黄 众, *朱红涛, 周心怀, 杨香华, 刘浩冉, 2012. 渤中凹陷西斜坡 BZ3-8区块东营组东二下高分辨率井震层序及地震沉积学. 海洋地质与第四纪地质, 32(1):61-67.李 敏, *朱红涛, 杨香华, 周心怀, 李建平, 王德英, 2012. 地震多属性在少井区和无井区沉积体系分析中的应用——以渤中西环BZ3-1区块沙河街组为例. 海洋地质与第四纪地质, 32(1):151-157.刘强虎, *朱红涛, 李敏, Keyu Liu, 2011. 基于层序地层模拟的湖岸线迁移对层序定量识别的指示:以鄂尔多斯盆地山2段为例.地质科技情报, 30(5):12-18.杜文波, *朱红涛, 杨香华, 李敏, 黄众, 刘强虎, 2011. 渤海湾盆地QHD29-2区块东营组东三段沉积与构造-古地貌的响应. 海洋地质与第四纪地质, 31(6):47-54.李 敏, *朱红涛, 郭巧珍, 黄胜兵, 2010. 沉积物理模拟技术进展及发展趋势.地质科技情报, 29(3):137-142. |