教师主页移动版

主页 > 浙江省 > 浙江工业大学

陈巧丽

姓名 陈巧丽
性别 发明专利4999代写全部资料
学校 浙江工业大学
部门 化学工程学院
学位 博士
学历 化学工程学院
职称 讲师
联系方式 莫干山校区化工1号楼110
邮箱 qlchen@zjut.edu.cn
   
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料

个人简介 学习及工作经历1.2018/07-至今,浙江工业大学,化学工程学院2.2012/09-2018/06,厦门大学,物理化学,博士3.2016/09-2017/09, 美国埃默里大学,物理化学,国家公派联合培养4.2008/09-2012/06, 厦门大学,化学,学士研究兴趣贵金属纳米晶的可控合成及其电催化应用、结合电子显微和衍射技术的纳米材料结构解析  教学与课程 1.基础化学实验(I)2.无机化学E3.现代催化剂表征技术--XRD模块获奖1. 化工学院“青松杯”青年教师教学大比武 二等奖2. 浙江工业大学首届教师教学设计比赛 三等奖 育人成果 迄今为止指导7名研究生(其中两人硕博连读,两人毕业)及1名本科生。 科研项目 1. 国家自然科学基金青年项目 2020.01-2022.12 主持 结题2. 国家重点研发计划 2022.01-2026.12 参与 在研3. 国家重点研发计划-政府间 2022.09-2025.08 参与 在研 科研成果 第一作者(含共同)/通讯作者(含共同)论文:[1]  T. Cheng, J. Tian, J. Du, Z. Wang, J. Ye, A. Liu, Q. Chen*, Y. Zhu, Self-Interface in Rh Nanosheets-Supported Tetrahedral Rh Nanocrystals for Promoting Electrocatalytic Oxidation of Ethanol. Small 2023, e2306221.[2]   Q. Chen*, Y. Ren, H. Jin, Z. Wang, T. Cheng, T. Sun, J. Tian, Y. Zhu, Icosahedral Pd Nanocrystal Catalysts with Dispersed Bi Atoms via Photochemical Route for Enhanced Formic Acid Oxidation Reaction. ChemNanoMat 2023, 9, e202300127.[3]   Q. Chen*, H. Jin, T. Cheng, Z. Wang, Y. Ren, J. Tian, Y. Zhu, Small amounts of main group metal atoms matter: ultrathin Pd-based alloy nanowires enabling high activity and stability towards efficient oxygen reduction reaction and ethanol oxidation. Nanoscale 2023, 15, 3772-3779.[4]   S. Zhao, A. Liu, Y. Li, Y. Wen, X. Gao, Q. Chen*, Boosting the Electrocatalytic CO(2) Reduction  Reaction by Nanostructured Metal Materials via Defects Engineering. Nanomaterials 2022, 12, 2389.[5]   X. Gao, Z. Wang, Y. Zhang, Y. Ren, G. Sheng, W. Shao, Q. Chen*, Engineering the degree of concavity of one-dimensional Au-Cu alloy nanorods with partial intermetallic compounds by facile wet chemical synthesis. Dalton Trans 2022, 51, 7790-7796.[6]   W. Shao#, Q. Q. Pan#, Q. L. Chen#, C. Z. Zhu, W. J. Tao, H. M. Zhu, H. J. Song, X. L. Liu, P. H. Tan, G. Sheng, T. L. Sun, X. N. Li, Y. H. Zhu, Symmetry Breaking in Monometallic Nanocrystals toward Broadband and Direct Electron Transfer Enhanced Plasmonic Photocatalysis. Adv Funct Mater 2021, 31, 2006738.[7]    G. Du, Q. Chen*, H. Jin, S. Xie, Q. Kuang*, Z. Xie, Concave nano-octahedral alloys: wet chemical synthesis of bimetallic Pt-Pd nanocrystals with high-index {hhl} Facets. Dalton Trans 2021, 50, 12083-12087.[8]   Q. Chen, C. Dwyer, G. Sheng, C. Zhu, X. Li, C. Zheng, Y. Zhu*, Imaging Beam-Sensitive Materials by Electron Microscopy. Adv Mater 2020, 32, e1907619.[9]   Y. Dong, Q. Chen*, X. Cheng, H. Li, J. Chen, X. Zhang, Q. Kuang*, Z. Xie, Optimization of gold–palladium core–shell nanowires towards H2O2 reduction by adjusting shell thickness. Nanoscale Adv 2020, 2, 785-791.[10]  Q. Chen, T. Cheng, H. Fu, Y. Zhu*, Crystal phase regulation in noble metal nanocrystals. Chinese J Catal 2019, 40, 1035-1056.[11]  Q. Chen, H. Li, Y. Jiang, Z. Xie*, 具特定晶面且大比表面积贵金属纳米晶催化基元的构筑. 电化学2018, 24,1.[12]   G. Du, J. Zhang, Q. Chen*, Q. Kuang, Z. Xie*, Morphology led high dispersion of Pt icosahedral nanocrystals on carbon nanotubes for enhanced electro-catalytic activity and stability. Chem Commun 2018, 54, 10855-10858.[13]  Q. Chen, Z. Cao, G. Du, Q. Kuang*, J. Huang, Z. Xie*, L. Zheng, Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications. Nano Energy 2017, 39, 582-589.[14]  Q. Chen, G. Du, Y. Dong, Z. Cao, Z. Xie*, L. Zheng, Surfactant dependent evolution of Au-Pd alloy nanocrystals from trisoctahedron to excavated rhombic dodecahedron and multipod: a matter of crystal growth kinetics. Science Bulletin 2017, 62, 1359-1364.[15]  Q. Chen, Y. Jia, S. Xie, Z. Xie*, Well-faceted noble-metal nanocrystals with nonconvex polyhedral shapes. Chem Soc Rev 2016, 45, 3207-3220.[16]  Q. Chen, Y. Yang, Z. Cao, Q. Kuang*, G. Du, Y. Jiang, Z. Xie*, L. Zheng, Excavated Cubic Platinum-Tin Alloy Nanocrystals Constructed from Ultrathin Nanosheets with Enhanced Electrocatalytic Activity. Angew Chem Int Ed 2016, 55, 9021-9025.[17]  Q. Chen, Y. Jia, W. Shen, S. Xie*, Y. Yang, Z. Cao, Z. Xie*, L. Zheng, Rational design and synthesis of excavated trioctahedral Au nanocrystals. Nanoscale 2015, 7, 10728-10734.[18]  Q. Chen, J. Zhang*, Y. Jia, Z. Jiang, Z. Xie*, L. Zheng, Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances. Nanoscale 2014, 6, 7019-7024.近5年合作文章:  [1]   Y. Liu, W. Yang*, Q. Chen, Z. Xie, T. Lian*, Nanorod length-dependent photodriven H2 production in 1D CdS-Pt heterostructures. J Chem Phys 2023, 159, 104706.[2]   H. Song, X. Xu, J. Chen, Y. Zhang, J. Zhao, C. Zhu, H. Zhang, Y. Peng, Q. Chen, G. Sheng, T. Sun, Y. Han, X. Li, Y. Zhu*, Evoking Cooperative Geometric and Electronic Interactions at Nanometer Coherent Interfaces toward Enhanced Electrocatalysis. Adv Funct Mater 2023, 33, 2301490,[3]   H. Shi, G. Feng, T. Sun, X. Wang, L. Ding, Z. Wang, H. Jin, Q. Chen, S. Wang, X. Zhong*, Y. Zhu*, J. Wang*, Convex polyhedral nanocrystals with high-index and low-index microfacets for electrochemical co-production of ozone and hydrogen peroxide. Chem Catal 2023, 3.[4]   Y. Liu, W. Yang*, Q. Chen, D. A. Cullen, Z. Xie, T. Lian*, Pt Particle Size Affects Both the Charge Separation and Water Reduction Efficiencies of CdS-Pt Nanorod Photocatalysts for Light Driven H2 Generation. J Am Chem Soc 2022, 144, 2705-2715.[5]   W. Liu#, D. Zheng#, T.Deng, Q. Chen, C. Zhu, C. Pei, H. Li, F. Wu, W. Shi, S. Yang, Y. Zhu*, X. Cao*, Boosting Electrocatalytic Activity of 3d‐Block Metal (Hydro)oxides by Ligand‐Induced Conversion. Angew Chem Int Ed2021, 60, 10614-10619.[6]   B. Y. Liu*, J. J. Huang, Z. T. Liao, C. Z. Zhu, Q. L. Chen, G. Sheng, Y. H. Zhu*, Y. Huang, J. X. Dong, Integrating pore interconnectivity and adaptability in a single crystal hierarchical zeolite for liquid alkylation. Aiche Journal 2021, 67, e17177.[7]   J. W. Zhang, G. F. Du, H. Q. Li, Q. L. Chen, Q. Kuang*, Z. Y. Jiang, Z. X. Xie*, Tailoring the Chemical Potential of Crystal Growth Units to Tune the Bulk Structure of Nanocrystals. Small Methods 2020, 2000447.[8]   Y. Liu, Q. Chen, D. A. Cullen, Z. Xie, T. Lian*, Efficient Hot Electron Transfer from Small Au Nanoparticles. Nano Lett 2020, 20, 4322-4329.

陈巧丽