熊缨_教师主页

教师主页移动版

主页 > 浙江省 > 浙江工业大学

熊缨

个人简介 研究领域:[1]工程材料和结构的疲劳、损伤与断裂[2]材料表面改性[3]材料的腐蚀与防护教育经历:2002-10至2006-03,日本长崎大学,工学部构造工学科,博士1996-09至1999-04,吉林工学院,材料系,硕士1986-09至1989-06,长春大学,机电系工作经历:(1) 2013-09至现在,浙江工业大学,机械工程学院,教授(2) 2013-1至2014-01,美国内华达大学里诺分校,机械工程系,访问学者(3) 2010-12至2011-03,美国内华达大学里诺分校,机械工程系,访问学者(4) 2006-09至2013-08,浙江工业大学,机械工程学院,副教授(5) 2006-04至2006-08,浙江工业大学,机械工程学院,讲师(6) 1999-05至2002-09,浙江工业大学,机电学院,讲师(7) 1989-07至1996-08,航空航天部长春机载设备公司,产品设计研究所,工程师研究项目:主持和承担国家自然科学基金6项、国家十五攻关子课题1项、浙江省科技厅重点和一般项目3项、浙江省自然科学基金3项、教育部留学回国人员科技活动启动项目1项和杭州市科技局项目和浙江省教育厅等纵向项目,以及多项激光加工方面的横向课题。近几年项目:[1]国家自然科学基金面上项目(52175151):织构型镁合金服役工况下多模式棘轮效应及全寿命棘轮疲劳损伤评定,2022.01-2025.12。主持人[2] 浙江省自然科学基金(LY20E050024):强织构镁合金服役条件下全寿命棘轮变形行为的研究,2020.01-2022.12。主持人[3] 国家自然科学基金面上项目(51775502):可控降解医用镁基表面LSP/MAO功能化微结构重构及腐蚀疲劳行为评价,2018.01-2021.12。主持人[4]国家自然科学基金面上项目(51275472):镁合金多轴循环加载下的宏微观损伤演化与疲劳建模,2013.01-2016.12。主持人[5]浙江省自然科学基金(Y12E050424):微观尺度下镁合金多轴疲劳损伤演化机理与疲劳建模,2012.01-2013.12。主持人[6]浙江省自然科学基金(Y107284):基于裂纹尖端弹塑性行为的疲劳裂纹扩展评价法的研究,2008.01-2010.12。主持人[7]浙江省科技厅(2012C21101):骨植入镁合金表面生物纳米陶瓷复合涂层制备工艺与可控降解技术研发,2012.01-2013.12。主持人[8]教育部留学回国人员科研启动金:基于疲劳裂纹尖端弹塑性行为的裂纹扩展评价法的研究2008.01-2010.12。主持人[9]浙江工业大学重点基金:金属基非均质材料细观尺度下的多轴循环变形行为和损伤演化研究2011.1-2012.12。主持人[10]国家自然科学基金面上项目(51371039):氢、阳极溶解在高强度铝合金应力腐蚀过程中的定量作用研究,2014.01-2017.12。合作主持人[11]国家自然科学基金(海外学者)(50428504):结构损伤、疲劳与断裂,2005.01-2007.12。参与研究成果:在国内外著名学术杂志上(International Journal of Plasticity、International Journal of Fatigue、Materials Science and Engineering A/C、Journal of Alloys and Compounds、Surface & Coatings Technology、Applied Surface Science、中国激光、金属学报、机械工程学报)发表SCI、EI收录论文80余篇。专利30余项。近年发表的代表性论文:[1] Zhu, T., Gong, X.H., Xiong, Y.*, Hu, X.X., Effect of initial orientation on corrosion behavior of AZ80 magnesium alloy in simulated body fluid, Metals and Materials International, 2021, 27: 2645–2655.[2] Zhu, T., Yu, Y., Shen, Y.S., Xiong, Y.*, Wear behavior of extruded ZK60 magnesium alloy in simulated body fluid with different pH values, Materials Chemistry and Physics, 2021, 262: 124292.[3] He L.Y., Yang, J., Xiong, Y.*, Song, R.G., Effect of solution pH on stress corrosion cracking behavior of modified AZ80 magnesium alloy in simulated body fluid, Materials Chemistry and Physics, 2021, 261: 124232.[4] Zhu, T., Yu, Y., Yang, J., Shen Y.S., He, L.Y., Xiong, Y.*, Dynamic corrosion behavior of AZ80 magnesium alloy with different orientations in simulated body fluid, Materials Chemistry and Physics, 2021, 259: 124039.[5] Xiong, Y., Hu, X.X., Weng, Z.Y., Song, R.G., Stress corrosion resistance of laser shock peening/microarc oxidation reconstruction layer fabricated on AZ80 magnesium alloy in simulated body fluid, Journal of Materials Engineering and Performance, 2020, 29:5750–5756.[6] Xiong, Y., Zhu, T., Yang, J., Yu, Y., Gong X.H., Effect of twin-induced texture evolution on corrosion resistance of extruded ZK60 magnesium alloy in simulated body fluid, Journal of Materials Engineering and Performance, 2020, 29: 5710–5717.[7] Shen, Y.S., He, L.Y., Yang Z.Y., Xiong, Y.*, Corrosion behavior of different coatings prepared on the surface of AZ80 magnesium alloy in simulated body fluid, Journal of Materials Engineering and Performance, 2020, 29: 1609–1621.[8] Xiong, Y., Yang, Z.Y., Zhu, T., Jiang, Y.Y., Effect of texture evolution on corrosion resistance of AZ80 magnesium alloy subjected to applied force in simulated body fluid, Materials Research Express, 2020, 7: 015406.[9] Xiong, Y., Shen, Y.S., He, L.Y., Yang Z.Y., Song R.G., Stress corrosion cracking behavior of LSP/MAO treated magnesium alloy during SSRT in a simulated body fluid, Journal of Alloys and Compounds, 2020, 822: 153707.[10] Xiong, Y., Jiang, Y., Compressive deformation of rolled AZ80 magnesium alloy along different material orientations, Journal of Materials Science, 2020, 55: 4043–4053.[11] Xiong, Y., Yang, Z.Y., Song, R.G., Hu, X.X., Degradation behavior of AZ80 magnesium alloy with LSP/MAO, Materials Research Express, 2019, 6:116587.[12] Xiong, Y., Yang, Z.Y., Hu, X.X., Song, R.G., Bioceramic Coating Produced on AZ80 Magnesium Alloy by One-Step Microarc Oxidation Process, Journal of Materials Engineering and Performance, 2019, 28: 1719–1727.[13] Xiong, Y., Gong, X.H., Jiang, Y., Effect of initial texture on fatigue properties of extruded ZK60 magnesium alloy, Fatigue and Fracture of Engineering Materials and Structures, 2018, 41: 1504–1513. [14] Xiong, Y., Yu, Q., Jiang, Y., Deformation of extruded ZK60 magnesium alloy under uniaxial loading in    different material orientations, Materials Science and Engineering A, 2018, 710: 206–213.[15] Xiong, Y., Hu, Q., Hu, X.X., Song, R.G., Microstructure and corrosion resistance of Ti3O5-HA bio-ceramic coating fabricated on AZ80 magnesium alloy, Surface & Coatings Technology, 2017, 325: 239–247.[16] Xiong, Y., Hu, X.X., Song, R.G., Characteristics of CeO2/ZrO2-HA composite coating on ZK60 magnesium alloy, Journal of Materials Research, 2017, 32: 1073–1082.[17] Xiong, Y., Hu, Q., Song, R.G., Hu, X.X., LSP/MAO composite bio-coating on AZ80 magnesium alloy for biomedical application, Materials Science and Engineering C, 2017, 75: 1299–1304.[18] Xiong, Y., Jiang, Y., Cyclic deformation and fatigue of rolled AZ80 magnesium alloy along different material orientations, Materials Science and Engineering A, 2016, 677: 58–67.[19] Xiong, Y., Microstructure damage evolution associated with cyclic deformation for extruded AZ31B magnesium alloy, Materials Science and Engineering A, 2016, 675: 171–180.  [20] Xiong, Y., Yu, Q., Jiang Y., Cyclic deformation and fatigue of extruded AZ31B magnesium alloy under different strain ratios, Materials Science and Engineering A, 2016, 649: 93–103.[21] Xiong, Y., Lu, C., Wang, C., Song, R.G., Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid, Journal of Alloys and Compounds, 2015, 625: 258–265[22] Xiong, Y., Lu, C., Wang, C., Song, R.G., The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition, Applied Surface Science, 2014, 322: 230–235.[23] Xiong, Y., Jiang, Y., Fatigue of ZK60 magnesium alloy under uniaxial loading International Journal of Fatigue, 2014, 64: 74–83.[24] Xiong, Y., Yu, Q., Jiang, Y., An experimental study of cyclic plastic deformation of extruded ZK60 magnesium alloy under uniaxial loading at room temperature, International Journal of Plasticity, 2014, 53: 107–124.[25] Xiong, Y., Lu, C., Wang, C., Song, R.G., Characterization and Electrochemical Corrosion Behavior of Biological Ceramic Coatings on Magnesium Alloy by Micro-Arc Oxidation, Journal of Biobased Materials and Bioenergy, 2014, 8(2): 158-164. [26] Xiong, Y., Yu, Q., Jiang, Y., Multiaxial fatigue of extruded AZ31B magnesium alloy,Materials Science and Engineering A, 2012, 546: 119–128.[27] Xiong, Y., Hu, X.X.,The effect of microstructures on fatigue crack growth in Q345 steel welded joint,Fatigue & Fracture of Engineering Materials & Structures, 2012, 35: 500–512.译著:[1]熊缨译.日本21世纪大学理工教材—《激光工程》,科学出版社,ISBN7-03-010039-5,2002.2[2] 熊缨译.日本21世纪大学新型教材—《半导体工程学》,科学出版社,ISBN7-03-009322-4,2001.6[3]熊缨, 胡夏夏译. 日本21世纪大学理工教材—《光与电磁波工程》,科学出版社,ISBN7-03-010945-7,2003.2获得奖励:1995年:获中国航空航天部运七-200A飞机首飞个人三等功1997年:《新型动力泵-压电陶瓷泵的研究》获吉林省科技成果奖(排名第7)2002年:《激光熔覆高耐磨合金层刀具的研制与开发》获浙江省科技进步三等奖(排名第2)2002年:《激光熔覆高耐磨合金层刀具的研制与开发》获浙江省教育厅高校成果三等奖(排名第2) 教学与课程 育人成果 科研项目 科研成果 社会服务