袁笛
姓名 | 袁笛 |
性别 | 主要任职:华山准聘副教授 |
学校 | 西安电子科技大学 |
部门 | 广州研究院 |
学位 | 毕业院校:哈尔滨工业大学 |
学历 | 性别:男 |
职称 | 讲师 |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
个人简介:Personal Profile 袁笛 (Di Yuan),西安电子科技大学广州研究院华山准聘副教授,硕士研究生导师,IEEE、ACM、CCF、CAAI、CSIG会员,石光明教授广州研究院团队成员。2019年9月至2021年3月在澳大利亚莫纳什大学 (Monash University)进行博士联合培养 (合作导师:Prof. Xiaojun Chang),2021年11月在哈尔滨工业大学(深圳)计算机科学与技术学院获得工学博士学位(导师:何震宇教授)。目前主要研究方向为计算机视觉、图像处理、目标跟踪。主持国家自然科学基金青年项目、博士后科学基金(特别资助、面上资助)项目、广东省基础与应用基础研究基金自然科学基金面上项目、中央高校基本科研业务费专项资金项目、广州市基础研究计划基础与应用基础研究项目、智能光电教育部重点实验室开放课题项目;参与国家重点研发计划青年科学家项目、国家自然基金面上、广东省自然科学基金面上、深圳市学科布局、深圳市基础研究等项目。累计发表学术论文30余篇,其中一作论文20余篇,ESI高被引论文6篇,热点论文2篇。同时担任如IEEE TPAMI、TIP、TCSVT、TCYB、TNNLS、TGRS、TIV、TMM、TITS、TFS、TAI、THMS、TII、TETCI、IoT-J、ACM TOMM、AAAI、ICONIP等近百种期刊或会议的审稿人。招生信息:欢迎对计算机视觉、图像处理、深度学习等研究方向感兴趣的优秀本科生加入,可以通过邮件与我联系:yuandi@xidian.edu.cn。本人可根据学生的个人需求和发展,帮助规划学业。优秀学生可推荐到国内、国际一流课题组进行访问、交流、继续深造。招生专业:计算机科学与技术(学术型)、电子信息(专业型:85401新一代电子信息技术 & 085404计算机技术)招生计划:计划5个硕士名额。方向为电子信息(专业型:85401新一代电子信息技术 & 085404计算机技术)。研究生培养地点为广州研究院。欢迎咨询/报考2025年硕士研究生!请邮件联系yuandi@xidian.edu.cn。依托卓越工程师学院招生,报考信息详见:https://gr.xidian.edu.cn/yjsy/yjszs.htm授课信息:本科生课程:《数值分析》、《知识工程》、《计算机导论与程序设计》研究生课程:《机器学习理论与实践》科研项目:国家自然科学基金青年项目(主持)广东省基础与应用基础研究基金自然科学基金面上项目(主持)广州市基础研究计划基础与应用基础研究项目(主持)中央高校基本科研业务费专项资金(主持)中国博士后科学基金第4批特别资助(站前)(主持)中国博士后科学基金第74批面上资助(主持)智能光电教育部重点实验室开放课题(重点项目)(主持)国家重点研发计划青年科学家项目(参与)国家自然科学基金面上项目:基于表征学习的红外目标跟踪方法研究(参与)国家自然科学基金面上项目:基于多视角与多示例学习的目标跟踪方法研究(参与)深圳市学科布局项目:面向智能机器人的红外视觉跟踪方法研究(参与)深圳市基础研究项目:面向增强现实的视觉目标跟踪方法(参与)深圳市基础研究项目:面向虚拟现实的平面目标跟踪方法(参与)广东省自然科学基金面上项目:基于分数阶对流扩散方程的地下水模型参数反演研究(参与)待发表论文:6. 无人机目标跟踪技术中的研究进展,投稿中,2024.5. 基于不确定性启发图像增强的水下目标跟踪,投稿中,2024.4. Self-Supervised Visual Tracking via Image Synthesis and Domain Adversarial Learning, In Peer Review, 2024.3. APR-Net Tracker: Attention Pyramidal Residual Network for Visual Object Tracking, In Peer Review, 2023.2. Hierarchical Attention Siamese Network for Thermal Infrared Target Tracking, In Peer Review, 2023.1. Unsupervised Cross-Domain for Thermal Infrared Target Tracking, In Peer Review, 2023.已发表论文:39. Di Yuan, Xiaojun Chang, Po-Yao Huang, Qiao Liu and Zhenyu He. Self-supervised deep correlation tracking [J]. IEEE Transactions on Image Processing, 2021, vol. 30, pp. 976-985. (SCI, CCF-A, JCR-Q1, 2021 IF=11.041, ESI高被引, 热点论文)( 广东省计算机学会优秀论文一等奖,深圳市优秀科技学术论文成果奖)38. Di Yuan, Xiaojun Chang, Qiao Liu, Yi Yang, Dehua Wang, Minglei Shu, Zhenyu He and Guangming Shi. Active learning for deep visual tracking [J]. IEEE Transactions on Neural Networks and Learning Systems, (Early Access) 2023: 1-13. (SCI, CCF-B, JCR-Q1,2021 IF=14.255, ESI高被引, 热点论文)37. Di Yuan, Haiping Zhang, Xiu Shu, Qiao Liu, Xiaojun Chang, Zhenyu He and Guangming Shi. Thermal Infrared Target Tracking: A Comprehensive Review[J]. IEEE Transactions on Instrumentation and Measurement, (Early Access) 2023: 1-19. (SCI, JCR-Q1,2022 IF=5.6)36. Di Yuan, Haiping Zhang, Xiu Shu, Qiao Liu, Xiaojun Chang, Zhenyu He and Guangming Shi. An Attention Mechanism Based AVOD Network for 3D Vehicle Detection [J]. IEEE Transactions on Intelligent Vehicles, (Early Access) 2023: 1-13. (SCI, JCR-Q1,2022 IF=8.2)35. Di Yuan, Xiaojun Chang, Zhihui Li and Zhenyu He. Learning adaptive spatial-temporal context-aware correlation filters for UAV tracking [J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2022, vol. 18, no.3 Article No.: 70, pp 1–18. (SCI, CCF-B, JCR-Q1, 2021 IF=4.094, ESI高被引, 热点论文)( 广东省计算机学会优秀论文二等奖)34. Di Yuan, Gu Geng, Xiu Shu, Qiao Liu, Xiaojun Chang, Zhenyu He and Guangming Shi. Self-Supervised Discriminative Model Prediction for Visual Tracking, Neural Computing and Applications, published online, 2023. (SCI, CCF-C, JCR-Q2, 2022 IF=6.0)33. Di Yuan, Xiu Shu, Qiao Liu and Zhenyu He. Aligned spatial-temporal memory network for thermal infrared target tracking [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, vol.70, no.3, pp.1224-1228. (SCI, JCR-Q2, 2022 IF=4.4, ESI高被引)32. Di Yuan, Xiu Shu, Qiao Liu, Xinming Zhang and Zhenyu He. Robust thermal infrared tracking via an adaptively multi-feature fusion model [J]. Neural Computing and Applications, 2023, vol. 35, pp.3423–3434. (SCI, CCF-C, JCR-Q2, 2022 IF=6.0)31. Di Yuan, Xiu Shu, Qiao Liu and Zhenyu He. Structural target-aware model for thermal infrared tracking [J]. Neurocomputing, 2022, vol. 491, pp.44-56. (SCI, CCF-C, JCR-Q1, 2022 IF= 6.0)30. Di Yuan, Xiu Shu, Nana Fan, Xiaojun Chang, Qiao Liu and Zhenyu He. Accurate bounding-box regression with distance-IoU loss for visual tracking, Journal of Visual Communication and Image Representation, 2022, vol. 83, p.103428. (SCI, CCF-C, JCR-Q2, 2020 IF= 2.678)29. Di Yuan, Nana Fan and Zhenyu He. Learning target-focusing convolutional regression model for visual object tracking [J]. Knowledge-Based Systems, 2020, vol. 194, p.105526. (SCI, CCF-C, JCR-Q1,2020 IF= 8.038)28. Di Yuan, Xin Li, Zhenyu He, Qiao Liu and Shuwei Lu. Visual object tracking with adaptive structural convolutional network [J]. Knowledge-Based Systems, 2020, vol. 194, p.105554. (SCI, CCF-C, JCR-Q1,2020 IF= 8.038)27. Di Yuan, Wei Kang and Zhenyu He. Robust visual tracking with correlation filters and metric learning [J]. Knowledge-Based Systems, 2020, vol. 195, p.105697. (SCI, CCF-C, JCR-Q1,2020 IF= 8.038)26. Di Yuan, Xiu Shu and Zhenyu He. TRBACF: Learning temporal regularized correlation filters for high performance online visual object tracking [J]. Journal of Visual Communication and Image Representation, 2020, vol. 72, p.102882. (SCI, CCF-C, JCR-Q2, 2020 IF= 2.678)25. Di Yuan, Xiaohuan Lu, Donghao Li, Yingyi Liang and Xinming Zhang. Particle filter re-detection for visual tracking via correlation filters [J]. Multimedia Tools & Applications, 2019: vol. 78, no.11, pp. 14277–14301. (SCI, CCF-C, JCR-Q2, 2020 IF= 2.757)24. Di Yuan, Xinming Zhang, Jiaqi Liu and Donghao Li. A multiple feature fused model for visual object tracking via correlation filters [J]. Multimedia Tools & Applications, 2019: vol. 78, no.19, pp. 27271–27290. (SCI, CCF-C, JCR-Q2, 2020 IF= 2.757)23. Di Yuan, Shuwei Lu, Donghao Li and Xinming Zhang. Graph refining via iterative regularization framework [J]. SN Applied Sciences, 2019: vol. 1, no.5, p.387. (EI, ESCI, 2022 IF= 2.6)22. Di Yuan and Xinming Zhang. An overview of numerical methods for the first kind Fredholm integral equation [J]. SN Applied Sciences, 2019: vol. 1, no.10, p.1178. (EI, ESCI, 2022 IF= 2.6)21. Qiao Liu, Jiatian Pi, Peng Gao, Di Yuan*. STFNet: Self-Supervised Transformer for Infrared and Visible Image Fusion[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, (Early Access) 2024: 1-14. (SCI, JCR-Q2,2022 IF= 5.3)20. Qiao Liu, Xin Li, Di Yuan, Chao Yang, Xiaojun Chang and Zhenyu He. LSOTB-TIR: A large-scale high-diversity thermal infrared single object tracking benchmark[J]. IEEE Transactions on Neural Networks and Learning Systems, (Early Access) 2023: 1-14. (SCI, CCF-B, JCR-Q1,2020 IF= 14.255)19. Qiao Liu, Di Yuan, Nana Fan, Peng Gao, Xin Li and Zhenyu He. Learning dual-level deep representation for thermal infrared tracking[J]. IEEE Transactions on Multimedia, 2022, vol. 25, pp.1269 - 1281. (SCI, CCF-B, JCR-Q1,2021 IF= 8.182, ESI高被引)18. Bing Liu, Xiaojun Chang, Di Yuan and Yong Yang. HCDC-SRCF tracker: Learning an adaptively multi-feature fuse tracker in spatial regularized correlation filters framework [J]. Knowledge-Based Systems, 2022, vol. 238, p.107913. (SCI, CCF-C, JCR-Q1,2020 IF= 8.038)17. Qiao Liu, Xin Li, Zhenyu He, Nana Fan, Di Yuan and Hongpeng Wang. Learning deep multi-level similarity for thermal infrared object tracking [J]. IEEE Transactions on Multimedia,2021: vol. 23, pp.2114 - 2126. (SCI, CCF-B, JCR-Q1, 2021 IF= 8.182, ESI高被引)16. Kai Yang, Zhenyu He, Wenjie Pei, Zikun Zhou, Xin Li, Di Yuan and Haijun Zhang. SiamCorners: Siamese corner networks for visual tracking [J]. IEEE Transactions on Multimedia, 2022: vol. 24, pp.1956 - 1967. (SCI, CCF-B, JCR-Q1, 2021 IF= 8.182, ESI高被引)( 广东省计算机学会优秀论文二等奖)15. Xiu Shu, Di Yuan*, Qiao Liu and Jiaqi Liu. Adaptive weight part-based convolutional network for person re-identification [J]. Multimedia Tools & Applications, 2020, vol. 79, no.31, pp. 23617-23632. (SCI, CCF-C, JCR-Q2, 2020 IF= 2.757)14. Jiaqi Liu, Kang Wang, Di Yuan and Jianjun Li. Lower bounds of the average mixture discrepancy for row augmented designs with mixed four-and five-level[J]. Communication in Statistics- Theory and Methods, 2022.(SCI, JCR-Q3, 2020 IF= 0.893)13. Qiao Liu, Xin Li, Zhenyu He, Chenglong Li, Jun Li, Zikun Zhou, Di Yuan, Jing Li, Kai Yang, Nana Fan and Feng Zheng. LSOTB-TIR: A large-scale high-diversity thermal infrared object tracking benchmark [C]. 28th ACM International Conference on Multimedia, 2020:3847-3856. (EI, CCF-A)12. Qiao Liu, Xin Li, Zhenyu He, Nana Fan, Di Yuan, Wei Liu and Yongsheng Liang. Multi-task driven feature models for thermal infrared tracking [C]. Thirty-Fourth AAAI Conference on Artifical Intelligence, 2020: 11604-11611. (EI, CCF-A)11. Xinming Zhang, Di Yuan and Chenchen Guan. An improved flower pollination algorithm for parameters inversion of fractional order diffusion equation [J]. Journal of Harbin Institute of Technology, 2018: vol.50, no.10, pp.151-161(EI, in Chinese).10. Weihua Ou, Di Yuan, Qiao Liu, et al. Object tracking based on online representative sample selection via non-negative least square [J]. Multimedia Tools & Applications, 2018: vol. 77, no.9, pp.10569-10587. (SCI, CCF-C, JCR-Q2, 2020 IF= 2.757)9. Xinming Zhang and Di Yuan. A niche ant colony algorithm for parameter identification of space fractional order diffusion equation [J]. IAENG International Journal of Applied Mathematics, 2017: vol. 47, no.2, pp.197-208. (EI)8. Weihua Ou, Di Yuan, Donghao Li, et al. Patch-based visual tracking with online representative sample selection [J]. Journal of Electronic Imaging, 2017:26(3), p.033006. (SCI, JCR-Q4, 2020 IF= 0.945)7. Di Yuan, Xiu Shu and Qiao Liu. Recent Advances on Thermal Infrared Target Tracking: A Survey [C]. 6th Asian Conference on Artificial Intelligence Technology (ACAIT) 2022:1-6. (EI)6. Di Yuan, Guanglei Zhao, Donghao Li, Zhenyu He and Nan Luo. Visual object tracking based on particle filter re-detection [C]. International Conference on Security, Pattern Analysis, and Cybernetics, (ICSPAC) 2017:7-12. (EI)5. Di Yuan, Xiaohuan Lu, Donghao Li, Zhenyu He and Nan Luo. Multi feature fused for visual tracking via correlation filters [C]. International Conference on Security, Pattern Analysis, and Cybernetics, (ICSPAC) 2017:88-93. (EI)4. Xiu Shu and Di Yuan*. Local Variance-driven Level Set Model withApplication to Segment Medicallmages [C]. International Conference on Cyber-physical Social Intelligence (ICCSI) 2023:1-6. (EI, Best Oral Paper Award)3. Qiao Liu, Di Yuan and Zhenyu He. Thermal infrared object tracking via Siamese convolutional neural networks[C]. International Conference on Security, Pattern Analysis, and Cybernetics, (ICSPAC) 2017:1-6. (EI, Best Paper Award)2. Xiaohuan Lu, Di Yuan, Zhenyu He and Donghao Li. Sparse selective kernelized correlation filter model for visual object tracking[C]. International Conference on Security, Pattern Analysis, and Cybernetics, (ICSPAC) 2017:100-105. (EI) 1. 袁笛.基于弱监督表示学习的热红外目标跟踪,《计算机技术与发展》卷: 34 期: 2024年04期, 页码: 35-41.教改论文:1. Di Yuan. Discussion and Thinking in Course Design and Teaching of Numerical Analysis[C]. 2023 4th International Conference on Big Data and Informatization Education (ICBDIE 2023):419-425. (EI) 发明专利:5. 一种基于对齐时空记忆网络的热红外目标跟踪方法。 发明专利(实审)20234. 一种基于主动学习指导的深度相关目标跟踪方法。 发明专利(实审)20233. 一种基于响应峰值的多特征融合目标跟踪定位方法。发明专利(实审)20222. 基于多周期循环一致性的自监督目标跟踪方法。 发明专利(实审)20221. 在相关滤波框架下基于粒子滤波重检测的目标跟踪方法。发明专利(授权)公告日:2022.2.11软件著作:1. 基于多层卷积神经网络的热红外目标跟踪软件V1.0。原始取得,2023荣誉与奖励:12/2023 广东省计算机学会优秀论文二等奖02/2023 广东省计算机学会优秀论文一等奖12/2022 深圳市优秀科技学术论文成果奖12/2020 哈尔滨工业大学优秀学生12/2020 博士研究生国家奖学金12/2019 哈尔滨工业大学优秀学生06/2019 国家留学基金委联合培养博士生奖学金05/2019 哈尔滨工业大学优秀团员12/2018 哈尔滨工业大学优秀学生 05/2018 哈尔滨工业大学优秀团员12/2017 “华为杯”第十四届中国研究生数学建模竞赛二等奖06/2017 哈尔滨工业大学(深圳校区)2017届优秀毕业生 (~10%)05/2016 哈尔滨工业大学优秀团员09/2015 哈尔滨工业大学研究生入学一等奖学金04/2014 Mathematical Contest In Modeling (MCM) Was Designated As Honorable Mention06/2013 “深圳杯”东三省数学建模联赛一等奖 |