冯晓莉_教师主页

教师主页移动版

主页 > 陕西省 > 西安电子科技大学

冯晓莉

个人简介:Personal Profile 冯晓莉,副教授,硕士生导师,江苏南通人。2005.7本科毕业于兰州大学,2005.9--2010.12在兰州大学硕博连读,导师为傅初黎教授,期间于2009.10--2010.9在瑞典林雪平大学进行联合培养,导师为Lars Elden教授。2011年来西安电子科技大学数学与统计学院工作,2012.4--2015.1在西安电子科技大学进行博士后工作,导师为刘三阳教授。2018.9--2019.9在美国普渡大学进行访问交流,合作导师为李培军教授。欢迎同学们推免或考取我的研究生,每年招收应用数学或计算数学硕士生1-2名,报考前请邮件联系:xiaolifeng@xidian.edu.cn 研究方向:1. 数值计算;2.快速算法;3.小波分析;4.傅里叶分析;5.随机微分方程;6.偏微分方程中的反问题。论文情况:发表论文31篇,其中一作论文15篇,3篇论文发表在反问题顶级期刊《Inverse Problems》上。[32] Xiaoli Feng, Qiang Yao, Peijun Li, Xu Wang, An inverse source problem for the stochastic multi-term time-fractional diffusion-wave equation, arXiv:2311.01170.[31] Xiaoli Feng, Xiaoyu Yuan, Meixia Zhao, Zhi Qian, Numerical methods for the forward and backward problems of a time-space fractional diffusion equation, Calcolo, (2024) 61:16, https://doi.org/10.1007/s10092-024-00567-3.[30] Yun Zhang, Xiaoli Feng,  A nonstationary iterated Quasi-Boundary value method for reconstructing the source term in a time-space fractional diffusion equation,  Journal of Computational and Applied Mathematics, 440, 115612, 2024.[29] Xiaoli Feng, Peijun Li, Xu Wang, An inverse potential problem for the stochastic diffusion equation with a multiplicative white noise, Inverse Problems and Imaging, 18(1), 271-285, 2024.[28] Xiaoli Feng, Chen Chen,  The backward problem of a stochastic PDE with biharmonic operator driven by fractional Brownian motion, Applicable Analysis, 102(18), 4972-4996, 2023.[27] Xiaoli Feng, Lizhi Zhao, The Backward Problem of Stochastic Convection–Diffusion Equation, Bull. Malays. Math. Sci. Soc., 45:3535–3560, 2022.[26] Xiaoli Feng, Meixia Zhao, Zhi Qian, A Tikhonov regularization method for solving a backward time-space fractional diffusion problem, Journal of Computational and Applied Mathematics,411:114236,2022.[25] Xiaoli Feng, Meixia Zhao, Peijun Li and Xu Wang, An inverse source problem for the stochastic wave equation, Inverse Problems & Imaging, 16(2): 397-415, 2022.[24] Xiaoli Feng,  Peijun Li, Xu Wang, An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion, Inverse Problems, 36(2020), 045008 (30pp), 2020.[23] Xiaoli Feng*, and Zhiqian, An a-posteriori wavelet method for solving two kinds of ill-posed problems, International Journal of Computer Mathematics, 95(9), 1893-1909, 2018.[22] Chunyu Qiu, Xiaoli Feng, A wavelet method for solving backward heat conduction problems, Electron. J. Differential Equations,  2017 (219), 1-19, 2017.[21] Zhi Qian*, and Xiao-Li Feng, A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation, Applicable Analysis, 96(10), 1656-1668, 2017.[20] Xiaoli Feng*, and Wantao Ning, A Wavelet regularization method for solving analytic continuation, International Journal of Computer Mathematics, 92(5), 1025-1038, 2015.[19] Xiao-Li Feng*, and Lars Eldén, Solving a Cauchy problem for a 3D elliptic PDE with variable coefficients by a quasi-boundary-value method, Inverse Problems, 30(1), 015005(17pp), 2014.[18] Xiao-Li Feng*, Wantao Ning, and Zhi Qian, A Quasi-Boundary-Value method for a Cauchy problem of an elliptic equation in multiple dimensions, Inverse Problems in Science and Engineering, 22(7), 1045-1061, 2014.[17] Hao Cheng, Xiao-Li Feng, A new filtering method for the Cauchy problem of the Laplace equation,International Journal of Computer Mathematics, 91(12), 2621-2630, 2014.[16] Zhi Qian*, and Xiao-Li Feng, Numerical solution of a 2D inverse heat conduction problem, Inverse Problems in Science and Engineering, 21(3), 467-484, 2013.[15] Zhi-Liang Deng*, Xiao-Mei Yang, and Xiao-Li Feng, A mollification regularization method for a fractional-diffusion inverse heat conduction problem, Mathematical Problems In Engineering,  2013, 9 pages, 2013.[14] Hao Cheng*, Chu-Li Fu, and Xiao-Li Feng, An optimal filtering method for stable analytic continuation, Journal of Computational and Applied Mathematics, 236, 2582-2589, 2012. [13] Xiao-Li Feng*, Chu-Li Fu, and Hao Cheng, A regularization method for solving the Cauchy problem for the Helmholtz equation, Applied Mathematical Modelling, 35, 3301-3315, 2011.[12] Zhi-Liang Deng*, Chu-Li Fu, Xiao-Li Feng, and Yun-Xiang Zhang, A mollification regularization method for stable analytic continuation,  Mathematics and Computers in Simulation, 81, 1593-1608, 2011.[11] Hao Cheng*, Chu-Li Fu, and Xiao-Li Feng, An optimal filtering method for the Cauchy problem of the Helmholtz equation, Applied Mathematics Letters, 24, 958-964, 2011.[10] Xiao-Li Feng, Lars Eldén and Chu-Li Fu, A quasi-boundary-value method for the Cauchy problem for elliptic equations with nonhomogeneous Neumann data, Journal of Inverse and Ill-posed Problems, 18(2010), 617-645.[9] Xiao-Li Feng, Lars Eldén and Chu-Li Fu, Stability and regularization of a backward parabolic PDE with variable coefficients, Journal of Inverse and Ill-posed Problems, 18(2010), 217-243.[8] Chu-Li Fu,  Xiao-Li Feng and Zhi Qian, Wavelets and high order numerical differentiation,  Applied Mathematical Modelling, 34(2010), 3008-3021.[7] Hao Cheng, Xiao-Li Feng and Chu-Li Fu, A mollification regularization method for the Cauchy problem of an elliptic equation in a multi-dimensional case, Inverse Problems in Science and Engineering, 18(2010), 971-982.[6] Chu-Li Fu, Xiao-Li Feng and Zhi Qian, The Fourier regularization for solving the Cauchy problem for the Helmholtz equation, Applied Numerical Mathematics, 59(2009), 2625-2640.[5] Chu-Li Fu, Zhi-Liang Deng, Xiao-Li Feng and Fang-Fang Dou, A modified Tikhonov regularization for stable analytic continuation, SIAM Journal on Numerical Analysis, 47(2009),  2982-3000.[4] Hao Cheng, Chu-Li Fu and Xiao-Li Feng, Determining surface heat flux in the steady state for the Cauchy problem for the Laplace equation,  Applied Mathematics and Computation, 211(2009), 374-382.[3] Xiao-Li Feng, Zhi Qian and Chu-Li Fu, Numerical approximation of solution of nonhomogeneous backward heat conduction problem in bounded region, Mathematics and Computers in Simulation, 79(2008), 177-188.[2] Chu-Li Fu, Fang-Fang Dou, Xiao-Li Feng and Zhi Qian, A simple regularization method for stable analytic continuation, Inverse Problems, 24(2008), 065003(15pp).[1] Zhi Qian, Chu-Li Fu and Xiao-Li Feng, A modified method for high order numerical derivatives, Applied Mathematics and Computation, 182 (2006), 1191-1200.主持或参与基金(5) 陕西省自然科学基础研究计划,面上项目,2024JC-YBMS-034, 三类随机反问题的理论分析与数值重构,2024-1至2025-12,5万,在研,主持(4) 国家自然科学基金委员会,面上项目,61877046, 有限资源下多层网络鲁棒性的优化,2019-1至2022-12,50万,已结题,参与(3) 国家自然科学基金委员会,青年项目,11401456,三维椭圆方程Cauchy 问题的正则化方法,2015-1 至2017-12,22 万元,已结题,主持(2) 国家自然科学基金委员会,面上项目,11171136,不适定问题非经典正则化方法有关问题的研究,2012-1 至2015-12,40 万元,已结题,参与(1) 国家自然科学基金委员会,数学天元项目,11126187, 柱形区域上变系数椭圆方程Cauchy 问题的数值计算,2012-1 至2012-12,3 万元,已结题,主持教改论文与教材零点定理的教学设计,高师理科学刊,38卷,1期,2018年。关于两道级数题目的推广与思考,高等数学研究,26卷,3期,2023年。《应用数值分析》,西安电子科技大学出版社,2020年。《数值分析学习指导与题解》,西安电子科技大学出版社,2022年。科研教学获奖2015年获校青年教师讲课比赛一等奖 2015年获校优质教学质量奖二等奖 获校2014-2015年校先进女职工称号 获校2014-2015年被评为“优秀教师” 2017年获校教学成果特等奖(3/5) 2018年获省教学成果一等奖(3/5) 2022-2023校优质教学质量奖二等奖2014年获陕西省数学会青年教师优秀论文一等奖 2016年获陕西高等学校科学技术奖一等奖(6/6) 2016年获陕西省科学技术奖一等奖(6/7) 指导本科生多次获得全国大学生数学建模竞赛国家一,二等奖,美国大学生数学建模竞赛国际一,二等奖,研究生数学建模竞赛国家一,二等奖 教学科研活动(1)讲授过本科生《高等数学I,II》,《数学分析选讲》,《复变函数》,《微分方程数值解》;研究生《微分方程数值解》,《数值分析》,《计算方法》等课程 (2)主持校教改项目一项、校示范性特色课程一项,参与教改项目两项,发表教改论文一篇 (3)在校第三十一个教师节暨表彰大会上,作为学校优秀教师代表在大会上发言,分享了在教学方面的成长过程 (4)2015年为新入职青年教师进行示范课:“青年教师授课方法与技巧” (5)2016年7月2日在“第二届陕西省青年数学教师交流研讨会暨西安电子科技大学应用数学博士点获批二十周年学术研讨会”上作了题为“行走在教学与科研之间”的报告 (6)2017年8月26日在“第二届全国应用数学研究与教学论坛”上作了题为“浅谈科研与教学相互促进”的报告 (7)2017年10月26日在西北农林科技大学作题为“有关讲课比赛的一点感想”的报告