20367周德洪教师主页|电子科技大学简历|20367周德洪招生信息|20367周德洪专利信息

教师主页移动版

主页 > 四川省 > 电子科技大学

20367周德洪

姓名 20367周德洪
性别
学校 电子科技大学
部门 发明专利包写包过 加急申请
学位 博士学位,学院列表 01  信息与通信工程学院 02 
学历 版权登记666包过 代写全部资料
职称 软件著作权666包写包过
联系方式 【发送到邮箱】
邮箱 【发送到邮箱】
人气
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳

电子科技大学(深圳)高等研究院   导师代码: 20367 导师姓名: 周德洪 性    别: 男 特    称: 职    称: 研究员 学    位: 博士学位 属    性: 专职 电子邮件: dhzhou@uestc.edu.cn 学术经历:   2008年-2012年 华中科技大学 自动化 学士 2012年-2016年 华中科技大学 控制理论与控制工程 博士 2016年-2018年 新加坡南洋理工大学 电气与电子工程学院 博士后 2018年-2020年 加拿大阿尔伯塔大学 电气与计算机系 博士后 2020年- 电子科技大学 自动化工程学院 /电子科技大学(深圳)高等研究院 研究员/博导 个人简介:   四川省“天府峨眉学者”青年人才,广东省“珠江学者”青年拔尖人才,深圳市“孔雀计划”C类高层次人才,龙华区“龙舞华章”B类高层次人才,电子科技大学“百人计划”特聘研究员,博导,IEEE高级会员,中国电源学会会员,中国自动化学会会员。主持国家自然科学基金面上项目1项。围绕电力电子技术在新能源并网、电力、电动汽车动力总成系统应用中的关键技术和科学问题,致力于电力电子接口中宽禁带器件驱动、多端口变换器拓扑、建模与控制、调制、可靠性、系统优化等技术的研究与开发,解决传统电力电子变换器装置体积重量大,系统集成度低,整机功率密度低,能量变换效率低等应用基础问题和重大技术问题,重点突破高集成度电力电子接口状态监测、故障检测、故障定位、故障隔离、视情检修和容错控制各环节的应用基础问题和重大技术问题。申请人在本领域顶级TOP期刊(本领域前5%)《IEEE Transactions on Power Electronics》以及《IEEE Transactions on Industrial Electronics》发表第一作者论文27篇,累计发表论文70余篇,申请/授权发明专利30余项。单篇论文最高引用148次,Google学术累计引用1400余次,成果被包括IEEE Fellow,智利工程院院士 Jose Rodriguez教授, IEEE Fellow,加拿大工程院院士Bin Wu教授,IEEE Fellow,Navid教授、慕尼黑工业大学Kennel教授等国际著名电力电子和电机传动专家在IEEE Transactions等权威期刊上的引用和正面评价。担任第六届国际电机驱动与电力电子预测控制大会出版主席。2021年度,电子科技大学综合考核校级优秀个人及科研创新奖。有非常良好的学术论文写作经验和技巧,指导20级博士生刘立杰发表中科院一区论文4篇,获博士研究生国家奖学金;21级硕士生黄峥沁发表中科院一区论文2篇,获硕士研究生国家奖学金,四川省优秀毕业生。 科研项目:   [1] 多能集成单级式多端口电机驱动拓扑衍生及控制方法,国家自然科学基金面上项目,纵向课题,主持, 2022-2025,60 万 [2] 面向光储联合发电的多端口逆变器及其关键应用技术研究,四川省自然科学基金面上项目,纵向课题,主持,2023-2024,20万 [3] 面向光储充一体化电站的多端口变流器关键技术研究,广东省自然科学基金面上项目,纵向课题,主持,2024-2026,15万 [4] 面向海上风电惯量提升的风储一体化多端口变流关键技术研究,广东省自然科学基金面上项目,纵向课题,主持,2024-2026,30万 [5] 面向复合能源电动汽车的多端口电机驱动器关键技术研究,深圳市自然科学基金面上项目,纵向课题,主持,2024-2026,30万 [6] 基于多端口并网逆变器的高能效分布式光储联合发电关键技术研究,深圳市自然科学基金面上项目,纵向课题,主持,2023-2025,30万 [7] 面向航空航天装备的混合集成高功率密度电源关键技术研发,深圳市技术攻关重点项目,纵向课题,主持,2023-2025,200万 [8] 混合能源电动汽车电力电子接口关键技术研究,电子科技大学杰出人才启动经费,纵向课题,主持,2020-2023,50万 [9] 四川省“天府峨眉学者”青年人才,主持,2020-2022; [10] 广东省“珠江学者”青年拔尖人才,主持,2021-2025; 企业委托课题: [1] 基于强化学习的数据中心水冷系统节能算法研究,深圳市腾讯计算机系统有限公司,主持,2023-2024,20万 [2] 高性能航空永磁同步电机驱动研究与开发,企业委托项目,主持,2023-2024,205万 [3] 高效率模块电源与车载综合电源研究与开发,企业委托项目,联合主持,2021-2022,308万 研究成果:   Selected Journal Papers: Selected Journal Papers (My student’s names are underlined): 2023 [1] Z. Huang, D. Zhou*, L. Wang, Z. Shen and Y. Li, "A Review of Single-Stage Multiport Inverters for Multisource Applications," in IEEE Transactions on Power Electronics, vol. 38, no. 5, pp. 6566-6584, May 2023 [2] L. Liu, D. Zhou*, J. Zou and W. Wang, "Zero Vector Regulation-Based Closed-Loop Power Distribution Strategy for Dual-DC-Port DC-AC Converter-Connected PV-Battery Hybrid Systems," in IEEE Transactions on Power Electronics, vol. 38, no. 6, pp. 6956-6968, June 2023. [3] D. Zhou*, K. Luo, Z. Shen, and J. Zou, "Deadbeat Power Distribution Control of Single-Stage Multiport Inverter-Fed PMSM Drive for Hybrid Electric Vehicles," in IEEE Transactions on Power Electronics, vol. 38, no. 6, pp. 7586-7597, June 2023. [4] L. Liu, D. Zhou*, J. Zou and W. Wang, "Decoupled Modeling and Wide-Range Power Distribution Strategy for the Multisource Inverter in Microgrids," in IEEE Transactions on Power Electronics, vol. 38, no. 10, pp. 12078-12090, Oct. 2023 [5] Z. Huang, D. Zhou*, Z. Shen, and J. Zou, "Directed Graph-based Topology Derivation Method for Single-Stage Multiport Inverters" in IEEE Transactions on Power Electronics, vol. 38, no. 11, pp. 14614-14627, Nov. 2023 [6] L. Liu, D. Zhou*, J. Zou, Z. Shen, and X. Fu, "Direct Duty Cycle Control-Based Power Allocation Strategy for Single-Stage Multiport Inverter in Islanded Microgrid," in IEEE Transactions on Power Electronics, Accepted, 2023. [7] D. Zhou*, K. Luo, Z. Shen, and J. Zou, "Vector Space Decomposition-Based Power Flow Control of Single-Stage Multiport Inverter-Fed PMSM Drive for Hybrid Electric Vehicles," in IEEE Transactions on Industrial Electronics, Accepted, 2023. Conference [1] H. Guan, D. Zhou*, “A Modified Space-Vector Modulation-based Flexible Power Control for Single-Stage Dual-Port Inverter-Connected Hybrid Electric Vehicles”, China Power Electronics and Energy Conversion Conference (CPEEC), 2023 [2] Z. Huang, D. Zhou*, Z. Shen, J. Zou, "Family of Single-Stage Multiport Inverters for Hybrid Renewable Energy Generation", The 2nd IEEE International Power Electronics and Application Symposium (PEAS), 2023 [3] X. Yang, D. Zhou*, ,Z. Shen, J. Zou, “Optimized Interleaved PWM of Internal-Parallel Multilevel Converter-Fed Dual-Three-Phase PMSM Drives With Reduced Torque Ripples”, The 49th Annual Conference of the IEEE Industrial Electronics Society(IECON), 2023 [4] L. Liu, D. Zhou*, J. Zou, "A Flexible Power Allocation Strategy for Dual-DC-Port Inverter-Connected PV-Battery Hybrid Systems", The 49th Annual Conference of the IEEE Industrial Electronics Society (IECON), 2023 [5] L. Liu, D. Zhou*, J. Zou, "High-Efficiency Quasi-Single-Stage Battery-Supercapacitor Hybrid Energy Storage System", The 49th Annual Conference of the IEEE Industrial Electronics Society (IECON), 2023 [6] L. Liu, D. Zhou*, J. Zou, "Deadbeat Power Control Strategy for Dual-DC-Port Inverter-Connected PV-Battery Hybrid Systems", China Power Electronics and Energy Conversion Conference (CPEEC), 2023 [7] K. Luo, D. Zhou*, J. Zou, X. Zhou, and Z. Shen “Decoupling Control of Single-Stage Multiport Inverter-Fed Motor Drives Using Zero-Sequence Voltage Injection”, The 49th Annual Conference of the IEEE Industrial Electronics Society (IECON), 2023. [8] K. Luo, D. Zhou*, J. Zou, X. Zhou, and Z. Shen, “Binary Search Based Flexible Power Control for Single-Stage Multiport Inverter-Fed Motor Drives”, The 2nd IEEE International Power Electronics and Application Symposium (PEAS), 2023. 2022 [1] M. Zhang, Z. Zhang, Z. Li, H. Chen and D. Zhou, "A Unified Open-Circuit-Fault Diagnosis Method for Three-Level Neutral-Point-Clamped Power Converters," in IEEE Transactions on Power Electronics, vol. 38, no. 3, pp. 3834-3846, March 2023. 2021 [1] D. Zhou, J. Wang, Y. Li, J. Zou and K. Sun, “Model Predictive Power Control of Grid-Connected Quasi Single-Stage Converters for High-Efficiency Low-Voltage ESS Integration,” IEEE Transactions on Industrial Electronics, Accepted, 2021. [2] J. Wang, K. Sun, D. Zhou, and Y. Li,"Virtual SVPWM Based Flexible Power Control for Dual-DC-Port DC-AC Converters in PV-Battery Hybrid Systems", IEEE Transactions on Power Electronics, Accepted, 2021. 2020 [1] D. Zhou, L. Ding, and Y. Li, “Two-stage optimization-based model predictive control of 5l-anpc converter-fed pmsm drives,” IEEE Transactions on Industrial Electronics, DOI 10.1109/TIE.2020.2984436, pp. 1–1, 2020. [2] D. Zhou, Z. Quan, Y. Li, and J. Zou, “A general constant-switching-frequency model-predictive control of multilevel converters with quasi-ps-pwm/ls-pwm output,” IEEE Transactions on Power Electronics, vol. 35, DOI 10.1109/TPEL.2020.2985094, no. 11, pp. 12429–12441, 2020. [3] D. Zhou, L. Ding, and Y. Li, “Two-stage model predictive control of npc inverter-fed pmsm drives under balanced and unbalanced dc links,” IEEE Transactions on Industrial Electronics, DOI 10.1109/TIE.2020.2984421, pp. 1–1, 2020. [4] D. Zhou, Z. Quan, and Y. Li, “Simplified predictive duty cycle control of multilevel converters with internal identical structure,” IEEE Transactions on Power Electronics, vol. 35, DOI 10.1109/TPEL.2020.2985078, no. 11, pp. 12416–12428, 2020. [5] D. Zhou, J. Wang, N. Hou, Y. Li, and J. Zou, “Dual-Port Inverters with Internal DC-DC Conversion for Adjustable DC-Link Voltage Operation of Electric Vehicles,” IEEE Transactions on Power Electronics, 10.1109/TPEL.2020.3040709, 2020. [6] C. Xue, D. Zhou, and Y. Li, “Finite-Control-Set Model Predictive Control for Three-Level NPC Inverter-fed PMSM Drives With LC Filter,” IEEE Transactions on Industrial Electronics, DOI 10.1109/TIE.2020.3042156, 2020. [7] C. Xue, D. Zhou, and Y. Li, “Hybrid Model Predictive Current and Voltage Control for LCL-Filtered Grid-Connected Inverter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Accept. [8] J. Wang, X. Liu, Q. Xiao, D. Zhou, H. Qiu, and Y. Tang, “Modulated model predictive control for modular multilevel converters with easy implementation and enhanced steady-state performance,” IEEE Transactions on Power Electronics, vol. 35, DOI 10.1109/TPEL.2020.2969688, no. 9, pp. 9107–9118, 2020. [9] C. Jiang, Z. Quan, D. Zhou, and Y. Li, “A centralized cb-mpc to suppress low-frequency zscc in modular parallel converters,” IEEE Transactions on Industrial Electronics, DOI 10.1109/TIE.2020.2982111, 2020. [10] F. Wu, J. Sun, D. Zhou, Y. Liu, T. Geng, and J. Zhao, “Simplified fourier series based transistor open-circuit fault location method in voltage-source inverter fed induction motor,” IEEE Access, vol. 8, DOI 10.1109/ACCESS.2020.2991744, pp. 83 953–83 964, 2020. 2019 [1] D. Zhou, Z. Quan, and Y. Li, “Hybrid model predictive control of anpc converters with decoupled low-frequency and high-frequency cells,” IEEE Transactions on Power Electronics, vol. 35, DOI 10.1109/TPEL.2019.2961077, no. 8, pp. 8569–8580, 2020. [2] D. Zhou, Z. Quan, and Y. Li, “Model predictive control of a nine-level internal parallel multilevel converter with phase-shifted pulsewidth modulation,” IEEE Transactions on Industrial Electronics, vol. 67, DOI 10.1109/TIE.2019.2955353, no. 11, pp. 9073–9082, 2020. [3] D. Zhou, C. Jiang, Z. Quan, and Y. R. Li, “Vector shifted model predictive power control of three-level neutral-point-clamped rectifiers,” IEEE Transactions on Industrial Electronics, vol. 67, DOI 10.1109/TIE.2019.2946549, no. 9, pp. 7157–7166, 2020. [4] D. Zhou, P. Tu, H. Qiu, and Y. Tang, “Finite-control-set model predictive control of modular multilevel converters with cascaded open-circuit fault ride-through,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, DOI 10.1109/JESTPE.2019.2911959, no. 3, pp. 2943–2953, 2020. 2018 [1] D. Zhou, H. Qiu, S. Yang, and Y. Tang, “Submodule voltage similarity-based open-circuit fault diagnosis for modular multilevel converters,” IEEE Transactions on Power Electronics, vol. 34, DOI 10.1109/TPEL.2018.2883989, no. 8, pp. 8008–8016, 2019. [2] D. Zhou, S. Yang, and Y. Tang, “Model-predictive current control of modular multilevel converters with phase-shifted pulsewidth modulation,” IEEE Transactions on Industrial Electronics, vol. 66, DOI 10.1109/TIE.2018.2863181, no. 6, pp. 4368–4378, 2019. [3] D. Zhou, P. Tu, and Y. Tang, “Multivector model predictive power control of three-phase rectifiers with reduced power ripples under nonideal grid conditions,” IEEE Transactions on Industrial Electronics, vol. 65, DOI 10.1109/TIE.2018.2798583, no. 9, pp. 6850–6859, 2018. [4] D. Zhou, S. Yang, and Y. Tang, “A voltage-based open-circuit fault detection and isolation approach for modular multilevel converters with model predictive control,” IEEE Transactions on Power Electronics, vol. 33, DOI 10.1109/TPEL.2018.2796584, no. 11, pp. 9866–9874, 2018. [5] D. Zhou and Y. Tang, “A model predictive control-based open-circuit fault diagnosis and tolerant scheme of three-phase ac-dc rectifiers,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, DOI 10.1109/JESTPE.2018.2888879, no. 4, pp. 2158–2169, 2019. 2017 [1] D. Zhou, X. Li, and Y. Tang, “Multiple-vector model-predictive power control of three-phase four-switch rectifiers with capacitor voltage balancing,” IEEE Transactions on Power Electronics, vol. 33, DOI 10.1109/TPEL.2017.2750766, no. 7, pp. 5824–5835, 2018. [2] F. Wu, J. Zhao, Y. Liu, D. Zhou, and H. Luo, “Primary source inductive energy analysis based real-time multiple open-circuit fault diagnosis in two-level three-phase pwm boost rectifier,” IEEE Transactions on Power Electronics, vol. 33, DOI 10.1109/TPEL.2017.2704589, no. 4, pp. 3411–3423, 2018. [3] L. Tian, J. Zhao, and D. Zhou, “Finite control set model predictive control scheme of four-switch three-phase rectifier with load current observer,” Control Engineering Practice, vol. 73, DOI 10.1016/j.conengprac.2017.12.009, pp. 186–194, 2018. 2016 [13] D. Zhou, Y. Li, J. Zhao, F. Wu, and H. Luo, “An embedded closed-loop fault-tolerant control scheme for nonredundant vsi-fed induction motor drives,” IEEE Transactions on Power Electronics, vol. 32, DOI 10.1109/TPEL.2016.2582834, no. 5, pp. 3731–3740, 2017. [14] D. Zhou, J. Zhao, and Y. Liu, “Independent control scheme for nonredundant two-leg fault-tolerant back-to-back converter-fed induction motor drives,” IEEE Transactions on Industrial Electronics, vol. 63, DOI 10.1109/TIE.2016.2581761, no. 11, pp. 6790–6800, 2016. [15] D. Zhou, J. Zhao, and Y. Li, “Model-predictive control scheme of five-leg ac-dc-ac converter-fed induction motor drive,” IEEE Transactions on Industrial Electronics, vol. 63, DOI 10.1109/TIE.2016.2541618, no. 7, pp. 4517–4526, 2016. 2015 [1] D. Zhou, J. Zhao, and Y. Liu, “Finite-control-set model predictive control scheme of three-phase four-leg back-to-back converter-fed induction motor drive,” IET Electric Power Applications, vol. 11, DOI 10.1049/iet-epa.2015.0617, no. 5, pp. 761–767, 2017. [2] C. Huang, F. Wu, J. Zhao, and D. Zhou, “A novel fault diagnosis method in svpwm voltage-source inverters for vector controlled induction motor drives,” International Journal of Applied Electromagnetics and Mechanics, vol. 50, DOI 10.3233/jae-150073, pp. 97–111, 2016. 2014 [1] D. Zhou, J. Zhao, and Y. Liu, “Predictive torque control scheme for three-phase four-switch inverter-fed induction motor drives with dc-link voltages offset suppression,” IEEE Transactions on Power Electronics, vol. 30, DOI 10.1109/TPEL.2014.2338395, no. 6, pp. 3309–3318, 2015. [2] J. Zhang, J. Zhao, D. Zhou, and C. Huang, “High-performance fault diagnosis in pwm voltage-source inverters for vector-controlled induction motor drives,” IEEE Transactions on Power Electronics, vol. 29, DOI 10.1109/TPEL.2014.2301167, no. 11, pp. 6087–6099, 2014. 专业研究方向: 专业名称 研究方向 招生类别 085400电子信息 04“控制科学与工程”研究方向组,08“控制科学与工程”研究方向组(非全) 博士专业学位 085400电子信息 09控制科学与工程(非全) 硕士专业学位 085406控制工程 01控制科学与工程 硕士专业学位

杨永