李敬轩教师主页|北京航空航天大学宇航学院简历|李敬轩招生信息|李敬轩专利信息

教师主页移动版

主页 > 北京市 > 北京航空航天大学

李敬轩

姓名 李敬轩
性别
学校 北京航空航天大学
部门 宇航学院
学位 工学博士学位
学历 版权登记666包过 代写全部资料
职称 教授
联系方式 【发送到邮箱】
邮箱 【发送到邮箱】
人气
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳

李敬轩 ( 教授 ) 赞337 的个人主页 http://shi.buaa.edu.cn/ljxuaa/zh_CN/index.htm   教授   博士生导师   硕士生导师 教师拼音名称:Jingxuan Li 电子邮箱:jingxuanli@buaa.edu.cn 所在单位:宇航学院 办公地点:北航沙河校区主楼D507 性别:男 学位:工学博士学位 在职信息:在职 毕业院校:Ecole Centrale Paris 个人简介 李敬轩,男,中共党员,北航宇航学院教授/博导,入选国家级人才计划青年项目,兼任北航宁波创新研究院特聘研究员,中国航天科技集团上海空间推进研究所技术副总师,液体火箭发动机喷雾燃烧实验室核心成员。   主要从事航空航天发动机燃烧、不稳定燃烧、先进燃烧测量技术和声学等方面的研究工作。   发展了低阶模型结合高精度数值仿真的不稳定燃烧预测方法,作为第一作者开发了OSCILOS软件,应用于多个火箭发动机、大型加热器等研制工作。针对非定常燃烧热释以及燃烧温度测量难题,发展了基于激光干涉、超声波、背景纹影的测量方法。在隔板、隔板喷嘴、声衬等被动控制方面开展机理研究。迄今为止,在Combustion and Flame、Journal of Sound and Vibration等国际重要学术期刊上发表SCI索引论文50余篇,授权发明专利20余项。   指导本科生参与科技创新实践与研究性学习,获得北航冯如杯二等奖、三等奖若干项,指导本科生获得北京市普通高等学校优秀本科生毕业设计(论文),北京航空航天大学本科毕业设计校级优秀论文。担任守鄂书院本科生导师,并获评优秀导师称号。   指导多名研究生获校级优秀博士学位论文,北京市优秀毕业生,北航优秀研究生等荣誉。   常年招硕/博研究生,欢迎优秀青年学者到课题组从事博士后研究,欢迎具有开拓创新意识和刻苦钻研精神的本科同学到实验室进行科研训练。   联系方式:jingxuanli@buaa.edu.cn  Researchgate网址:https://www.researchgate.net/profile/Jingxuan_Li3 ResearcherID: https://www.webofscience.com/wos/author/record/1843253   学术兼职 中国工程热物理学会燃烧学学术年会程序委员会委员 航空动力学报、推进技术、空气动力学报、实验流体力学、Advances in Aerodynamics等期刊青年编委 中国航天第三专业信息网液体推进技术青年委员 北京热物理与能源工程学会理事/副秘书长 SCI期刊发表 2024年 A1     Liu T, Wang P, Li J, et al. Experimental investigation on the effects of transverse injection distribution scheme on dual flame dynamics subjected to flow disturbances[J]. Aerospace Science and Technology, 2024: 109003. https://doi.org/10.1016/j.ast.2024.109003 A2     Hu W, Yang L, Zhang Y, Wang P and Li J. Reconstruction refinement of hybrid background-oriented schlieren tomography[J]. Physics of Fluids, 2024, 36(2). https://doi.org/10.1063/5.0190778 A3     Liang X, Wang Z, Ji L, Yang L, and Li J. Comparisons between the disturbances in chemiluminescence and heat release rate from acoustically perturbed partially premixed and diffusion flames[J]. Physics of Fluids, 2024, 36(2). https://doi.org/10.1063/5.0195926 A4     Liu C, Yang H, Ruan C, Yu L, Nan J, Li J and Lu X. Experimental study on effects of ammonia enrichment on the thermoacoustic instability of lean premixed swirling methane flames[J]. Fuel, 2024, 357: 129796. https://doi.org/10.1016/j.fuel.2023.129796 A5     Liang X, Yang L, Zhang Y, Hu W, Tian Y and Li J. Laser interferometric detection of heat release rate perturbation field of acoustically perturbed laminar premixed flames[J]. Experimental Thermal and Fluid Science, 2024: 111129. https://doi.org/10.1016/j.expthermflusci.2023.111129 A6     Liu X, Yu X, Yu X, Zhou H, Zhang S, Li J and Yang L. Measurement of jet gas–liquid interface fluctuations based on ultrasonic scattering. Physics of Fluids, 2024; 36 (1): 013333. https://doi.org/10.1063/5.0185278 A7     Tian Y, Liang X, Zhang S, Zhang Y, Yang L and Li J. Experimental study on conical flame transfer functions considering velocity profiles[J]. Fuel, 2024, 363: 130903. https://doi.org/10.1016/j.fuel.2024.130903   2023年 A8     Tian Y, Yang L, Morgans A S, and Li J. On the flame transfer function models for laminar premixed conical and V-flames considering the stretch effect[J]. Combustion and Flame, 2023, 258: 113105. https://doi.org/10.1016/j.combustflame.2023.113105 A9     Fang Z, Li Y, Zhang D, Liu X, Li J, Yang Li and Fu Q. Pressure Oscillation and Vortex in an Asymmetric T-junction[J]. Acta Astronautica, 2023, 213: 320-335. https://doi.org/10.1016/j.actaastro.2023.09.014 A10   Hu W, Zhang Y, Liang X, Li J and Yang L. Background-oriented schlieren measurements for asymmetrical laminar flames along arbitrary rays from a single view[J]. Experiments in Fluids, 2023, 64(8): 145. https://doi.org/10.1007/s00348-023-03680-1 A11   Fang Z, Zhang D, Liu X, Li J, Yang Li and Fu Q. Pressure Characteristics and Vortex Observation in Chiral-Symmetric Space Orthogonal Bifurcation[J]. Aerospace, 2023, 10(6): 568. https://doi.org/10.3390/aerospace10060568 A12   Yang Y, Wang G, Wu H, Zhu Z, Ma C, and Li J. Investigation of flame and flow response in the swirler with different divergence cups and central body under external excitation[J]. Physics of Fluids, 2023, 35(6). https://doi.org/10.1063/5.0151591 A13   Gao Y, Zhang X, Han W, Li J and Yang L. Effects of swirl number and bluff body on swirling flow dynamics[J]. AIP Advances, 2023, 13(2). https://doi.org/10.1063/5.0132024 A14   Wu J, Nan J, Yang L, and Li J. Reconstruction of the flame nonlinear response using deep learning algorithms[J]. Physics of Fluids, 2023, 35(1).https://doi.org/10.1063/5.0131928. A15   Liu T, Yang L, Qin L and Li J. Models of the time-averaged heat release rate of the two-dimensional laminar premixed slit flame subjected to the transverse disturbance[J]. Aerospace Science and Technology, 2023, 132 : 108072. https://doi.org/10.1016/j.ast.2022.108072 A16   Wang D, Nan J, Yang L Morgans A. S. and Li J. Analytical solutions for the acoustic field in thin annular combustion chambers with linear gradients of cross-sectional area and mean temperature[J]. Aerospace Science and Technology, 2023, 132: 108016. https://doi.org/10.1016/j.ast.2022.108016   2022年 A17   Song Y, Liu X, Li J, et al. Effect of the flame motion on azimuthal combustion instabilities[J]. Aerospace Science and Technology,2022, 130: 107930. https://doi.org/10.1016/j.ast.2022.107930 A18   Zhu S, Liu Y, Liang X, Li J, et al. The acoustic transfer impedance of baffled injectors in three-dimensional combustion chambers[J]. Aerospace Science and Technology, 2022, 130: 107868. https://doi.org/10.1016/j.ast.2022.107868 A19   Liang X, Yang L, Wang G, Li J, Hopf Bifurcation Analysis of the Combustion Instability in a Liquid Rocket Engine[J]. Aerospace,2022, 9(10). https://doi.org/10.3390/aerospace9100593 A20   Gao Y, Zhang B, Cheng J, Li J, et al. Influence of Flow Rate Distribution on Combustion Instability of Hypergolic Propellant[J]. Aerospace, 2022, 9(10). https://doi.org/10.3390/aerospace9100543 A21   Nan J, Li J, Yang L. Three-Dimensional Analytical Solutions for Acoustic Transverse Modes in a Cylindrical Duct with Axial Temperature Gradient and Non-Zero Mach Number[J]. Aerospace, 2022, 9(10). https://doi.org/10.3390/aerospace9100588 A22   Nan J, Li J, Morgans A S, et al. Theoretical analysis of sound propagation and entropy generation across a distributed steady heat source[J]. Journal of Sound and Vibration, 2022, 536: 117170. https://doi.org/10.1016/j.jsv.2022.117170 A23   Liu X, Qin L, Song Y, Li J, et al. The effect of mean flow on the intrinsic thermoacoustic instabilities in the duct and annular combustion chambers[J]. Aerospace Science and Technology, 2022, 127: 107691. https://doi.org/10.1016/j.ast.2022.107691 A24   Liu T, Nan J, Jiang X, Li J, et al. Models of the time-averaged heat release rate of laminar premixed conical and V-shape flames subjected to flow disturbances[J]. Fuel, 2022, 320: 123831. https://doi.org/10.1016/j.fuel.2022.123831 A25   Song Y, Li J, Yang L. Effect of flame motion on longitudinal combustion instabilities[J]. Aerospace Science and Technology,2022, 122: 107427. https://doi.org/10.1016/j.ast.2022.107427 A26   Jiang X, Li J, Yang L, et al. A nonlinearly kinematic model of the asymmetrically turbulent premixed slit flame subjected to two-way harmonic disturbances[J]. Combustion and Flame, 2022, 240: 112021. https://doi.org/10.1016/j.combustflame.2022.112021 A27   Liu T, Li J, Zhu S, et al. Determination of the heat conduction transfer function within the thermoacoustic instability limit cycle in a Rijke tube[J]. Applied Thermal Engineering, 2022, 206: 118084. https://doi.org/10.1016/j.applthermaleng.2022.118084 A28   Jiang X, Yang L, Liu T, Li J, Nonlinear models of laminar premixed slit flame responses subjected to two-way perturbations[J]. AIAA Journal, 2022, 60(2): 962 – 975. https://doi.org/10.2514/1.J060906   2021年 A29   Yang L, Pang B, Li J. Comparison of strongly and weakly nonlinear flame models applied to thermoacoustic instability[J]. Physics of Fluids, 2021, 33(9): 094108. https://doi.org/10.1063/5.0058539 A30   Li J, Wang D, Morgans A S, et al. Analytical solutions of acoustic field in annular combustion chambers with non-uniform cross-sectional surface area and mean flow[J]. Journal of Sound and Vibration, 2021, 506: 116175. https://doi.org/10.1016/j.jsv.2021.116175 A31   Zhu S, Li J, Liu W, et al. Theoretical and experimental investigations on the acoustic absorptions of baffled injectors[J]. AIAA Journal, 2021, 59(12): 5001 – 5010. https://doi.org/10.2514/1.J060665 A32   Liu T, Li J, Song Y, et al. A weakly nonlinear analytical model for the transversely forced flame describing function of a slit flame[J]. Fuel, 2021, 292: 120247. https://doi.org/10.1016/j.fuel.2021.120247 A33   Nan J, Li J, Song Y, et al. Analytical solutions for the three-dimensional acoustic field in a rectangular duct with temperature gradient and mean flow[J]. Aerospace Science and Technology, 2021, 109: 106436. https://doi.org/10.1016/j.ast.2020.106436 A34   Yang L, Zhu S, Li J. Analysis of acoustic, entropy and vorticity waves in a non-uniform annular combustor[J]. Aerospace Science and Technology, 2021, 112: 106588. https://doi.org/10.1016/j.ast.2021.106588 A35   Fang Y, Yang Y, Hu K, Wang G, Li J, et al. Experimental study on self-excited thermoacoustic instabilities and intermittent switching of azimuthal and longitudinal modes in an annular combustor[J]. Physics of Fluids, 2021, 33(8): 084104. https://doi.org/10.1063/5.0059315 A36   Yang Y, Fang Y, Zhong L, Xia Y, Jin T, Li J, et al. DMD analysis for velocity fields of a laminar premixed flame with external acoustic excitation[J]. Experimental Thermal and Fluid Science, 2021, 123: 110318. https://doi.org/10.1016/j.expthermflusci.2020.110318 A37   Yang Y, Wang G, Fang Y, Jin T, Li J, Experimental study of the effect of outlet boundary on combustion instabilities in premixed swirling flames[J]. Physics of Fluids, 2021, 33(2): 027106. https://doi.org/10.1063/5.0038984 A38   Lim Z, Li J, Morgans A S. The effect of hydrogen enrichment on the forced response of CH4/H2/Air laminar flames[J]. International Journal of Hydrogen Energy, 2021, 46(46): 23943 – 23953. https://doi.org/10.1016/j.ijhydene.2021.04.171   2020年 A39   Li J, Liu T, Yang L. An analytical model for the transversely forced flame transfer functions of conical and V-flame dynamics[J]. Fuel, 2020, 276: 117987. https://doi.org/10.1016/j.fuel.2020.117987 A40   Li J, Morgans A S, Yang L. The three-dimensional acoustic field in cylindrical and annular ducts with an axially varying mean temperature[J]. Aerospace Science and Technology, 2020, 99: 105712. https://doi.org/10.1016/j.ast.2020.105712 A41   Li J, Nan J, Yang L. Analytical solutions for the acoustic field in a thin annular duct with temperature gradient and mean flow[J]. Journal of Sound and Vibration, 2020, 467: 115043. https://doi.org/10.1016/j.jsv.2019.115043 A42   Yang L, Gao Y, Li J, et al. Theoretical atomization model of a coaxial gas–liquid jet[J]. Physics of Fluids, 2020, 32(12): 124108. https://doi.org/10.1063/5.0030291 A43   Cai Y, Li T, Du M, Li J, Effects of thermodiffusive instability on the spherical premixed flames anchored to a porous-plug burner[J]. Aerospace Science and Technology, 2020, 97: 105632. https://doi.org/10.1016/j.ast.2019.105632 A44   Zhang M, Li J, Cheng W, et al. Active control of thermoacoustic instability using microsecond plasma discharge[J]. Journal of Applied Physics, 2020, 127(3): 033301. https://doi.org/10.1063/1.5129722           2020年之前 A45   Feng S, Li J. H∞ loop-shaping control of azimuthal combustion instabilities in annular combustors[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2021, 40(1): 395 – 412. https://doi.org/10.1177/1461348419873455 A46   Li J, Yang D, Morgans A S. The effect of an axial mean temperature gradient on communication between one-dimensional acoustic and entropy waves[J]. International Journal of Spray and Combustion Dynamics, 2018, 10(2): 131 – 153. https://doi.org/10.1177/1756827717743910 A47   Li J, Xia Y, Morgans A S, et al. Numerical prediction of combustion instability limit cycle oscillations for a combustor with a long flame[J]. Combustion and Flame, 2017, 185: 28 – 43. https://doi.org/10.1016/j.combustflame.2017.06.018 A48   Li J, Morgans A S. The one-dimensional acoustic field in a duct with arbitrary mean axial temperature gradient and mean flow[J]. Journal of Sound and Vibration, 2017, 400: 248 – 269. https://doi.org/10.1016/j.jsv.2017.03.047 A49   Li J, Morgans A S. Commentary on manuscript “Comment on “The one-dimensional acoustic field with arbitrary mean axial temperature gradient and mean flow” (J. Li and A. S. Morgans, Journal of Sound and Vibration 400 (2017) 248–269)” [J]. Journal of Sound and Vibration, 2017, 410: 488 – 494. https://doi.org/10.1016/j.jsv.2017.08.019  A50   Li J, Morgans A S. Simplified models for the thermodynamic properties along a combustor and their effect on thermoacoustic instability prediction[J]. Fuel, 2016, 184: 735 – 748. https://doi.org/10.1016/j.fuel.2016.07.050 A51   Li J, Morgans A S. Feedback control of combustion instabilities from within limit cycle oscillations using H∞ loop-shaping and the ν-gap metric[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2016, 472(2191): 1 – 20. https://doi.org/10.1098/rspa.2015.0821 A52   Li J, Morgans A S. Time domain simulation of nonlinear thermoacoustic behaviour in a simple combustor using a wave-based approach[J]. Journal of Sound and Vibration, 2015, 346(0): 345 – 360. https://doi.org/10.1016/j.jsv.2015.01.032 A53   Li J, Durox D, Richecoeur F, et al. Analysis of chemiluminescence, density and heat release rate fluctuations in acoustically perturbed laminar premixed flames[J]. Combustion and Flame, 2015, 162(10): 3934 – 3945. https://doi.org/10.1016/j.combustflame.2015.07.031 A54   Han X, Li J, Morgans A S. Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model[J]. Combustion and Flame, 2015, 162(10): 3632 – 3647. https://doi.org/10.1016/j.combustflame.2015.06.020 A55   Li J, Richecoeur F, Schuller T. Reconstruction of heat release rate disturbances based on transmission of ultrasounds: Experiments and modeling for perturbed flames[J]. Combustion and Flame, 2013, 160(9): 1779 – 1788. https://doi.org/10.1016/j.combustflame.2013.03.014 A56   Li J, Richecoeur F, Schuller T. Determination of heat release rate disturbances in unconfined flames based on fluctuations in the travel time of ultrasonic waves[J]. Combustion Science and Technology, 2012, 184(4): 533 – 555. https://doi.org/10.1080/00102202.2011.649323 A57   Li J, Richecoeur F, Schuller T. Development of an acoustic diagnostic for determination of heat release rate perturbations in pulsated flames[J]. Mécanique & Industries, 2011, 12(3): 157 – 162. https://doi.org/10.1051/meca/2011117   专利授权 P1      李敬轩; 杨立军; 梁炫烨; 王子璇; 刘腾宇; 吉亮; 热释放率脉动测量装置及方法, 2024-1-23, 中国, ZL202311451423.0 P2      杨立军; 李敬轩; 朱烁烁 ; 一种提高吸声能力的背腔穿孔隔板喷嘴, 2024-2-6, 中国, ZL202110863255.0 P3      李敬轩; 刘腾宇; 郑腾杰; 王子璇; 周辰尧; 程翰璋; 一种研究热声不稳定纵向和切向模态耦合机理的实验装置及方法, 2024-2-6, 中国, ZL202111196589.3 P4      李敬轩; 杨立军; 梁炫烨; 王子璇; 张玥 ; 适用于光学诊断的燃烧器及其测温方法, 2023-09-01, 中国, ZL202310665903.0       P5      李敬轩; 杨立军; 梁炫烨; 张玥 ; 一种提高激光干涉测量精度的方法和装置, 2023-08-01, 中国, ZL202310627796.2       P6      李敬轩; 杨立军; 梁炫烨; 张玥; 王子璇 ; 一种空间频谱自适应滤波方法和装置, 2023-08-01, 中国, ZL202310627794.3       P7      杨立军; 李敬轩; 刘晓康; 余旭东; 王东斌; 张思懿 ; 测量密闭空间内射流气液界面的装置, 2023-08-01, 中国, ZL202310538878.X       P8      杨立军; 李敬轩; 梁炫烨; 张玥; 田雨 ; 纹影光学系统及待测流场的二维密度分布测量方法, 2022-04-26, 中国, ZL202210143767.4       P9      杨立军; 李敬轩; 张玥; 梁炫烨 ; 基于背景纹影法的全场热释放率扰动测量方法及装置, 2022-10-25, 中国, ZL202210913521.0       P10   杨立军; 李敬轩; 张玥; 梁炫烨; 徐旭; 宋艳; 田雨 ; 一种高时空分辨率全场热释放率测量方法和系统, 2022-07-01, 中国, ZL202210376818.8       P11   杨立军; 李敬轩; 梁炫烨; 张玥; 刘腾宇 ; 基于马赫曾德干涉的高频热释放率脉动场测量装置及方法, 2022-04-26, 中国, ZL202210051784.5       P12   李敬轩; 杨立军; 刘晓康; 方珅 ; 基于金属粒子添加的热声振荡主动控制装置, 2022-07-01, 中国, ZL202210401164.X       P13   杨立军; 李敬轩; 梁炫烨; 张玥; 徐旭; 宋艳 ; 降低沿视线积分测量位置系统误差的装置、方法和系统, 2022-09-20, 中国, ZL202210785022.8       P14   杨立军; 李敬轩; 刘晓康; 方珅 ; 研究金属粉对热声不稳定性影响的实验装置, 2022-08-02, 中国, ZL202210401165.4       P15   杨立军; 李敬轩; 刘晓康; 宋艺伟; 张玥; 梁炫烨 ; 一种脉动气体发生装置及不稳定燃烧实验设备, 2023-06-16, 中国, ZL202210118010.X       P16   杨立军; 李敬轩; 梁炫烨; 吉亮; 张玥 ; 一种Rijke管边界耗散的定量调节装置及方法, 2022-07-05, 中国, ZL202210424243.2       P17   杨立军; 李敬轩; 张玥; 梁炫烨 ; 一种基于可变背景的流场测量装置及方法, 2022-05-24, 中国, ZL202210292219.8       P18   李敬轩; 朱烁烁; 方珅; 刘腾宇; 孟羽倩; 李培烁; 于泽熙 ; 一种改变吸声频率的主/被动控制Helmholtz共振器, 2022-5-10, 中国, ZL202110637862.5       P19   杨立军; 李敬轩; 宋艺伟 ; 一种超声波测量温度场的重建方法, 2021-11-02, 中国, ZL202110087396.8       P20   宋艳; 杨立军; 李敬轩; 刘虎 ; 实时监测火焰热释放率脉动的太赫兹装置及测量方法, 2023-01-17, 中国, ZL202110382379.7       P21   杨立军; 李敬轩; 朱烁烁 ; 一种增加声能耗散的椭圆隔板喷嘴修型方法, 2022-4-15, 中国, ZL202011016185.7       P22   杨立军; 李敬轩; 朱烁烁 ; 一种改进隔板喷嘴声能耗散的修型方法, 2021-11-2, 中国, ZL202011014304.5       P23   杨立军; 叶汉玉; 覃粒子; 富庆飞; 李敬轩 ; 一种控制射流断裂与液滴生成的方法及装置, 2020-11-20, 中国, ZL201810049101.6       P24   杨立军; 李敬轩; 刘旺; 富庆飞; 覃粒子 ; 基于声能耗散的隔板喷嘴最佳间隙设计方法及隔板喷嘴, 2020-9-11, 中国, ZL201810874442.7       P25   杨立军; 李敬轩; 杜明龙; 覃粒子; 富庆飞 ; 一种适用于脉动燃烧器振荡燃烧的喷嘴结构及设计方法, 2020-3-6, 中国, ZL201810874501.0         教育经历 [1]. 2008.9 -- 2012.1 法国巴黎中央理工学院       博士研究生毕业       博士学位      导师:Thierry Schuller教授和Franck Richeceour教授 [2]. 2006.9 -- 2008.7 北京航空航天大学       硕士研究生毕业       工学硕士学位      导师:黄勇教授 [3]. 2002.9 -- 2006.7 北京航空航天大学       大学本科毕业       工学学士学位 工作经历 [1]. 2019.5 -- 至今 北京航空航天大学      宇航学院      教授 [2]. 2017.9 -- 2019.4 北京航空航天大学      宇航学院      卓越百人特别副研究员 [3]. 2013.3 -- 2017.7 英国伦敦帝国理工学院      航空系、机械系      博士后      导师:Aimee Morgans教授,ERC Starting Grant资助 社会兼职 [1]. 2021.1 -- 至今 中国工程热物理学会燃烧学学术年会程序委员会委员 [2]. 2023.7 -- 至今 《推进技术》青年编委 [3]. 2023.3 -- 至今 《空气动力学进展(英文)》青年编委 [4]. 2023.3 -- 至今 《实验流体力学》青年编委 [5]. 2023.3 -- 至今 《空气动力学学报》青年编委 [6]. 2018.12 -- 至今 北京热物理与能源工程学会副秘书长 [7]. 2017.12 -- 至今 北京热物理与能源工程学会第六届、第七届理事 研究方向 [1] 发动机喷管声学研究 [2] 发动机流场参数光学、声学测量方法研究 [3] 不稳定燃烧机理研究 [4] 不稳定燃烧主动控制 [5] 不稳定燃烧被动控制 [6] 液体火箭发动机、固体火箭发动机不稳定燃烧预测 团队成员 团队名称: 燃烧不稳定性及先进测量技术研究团队 胡炜

杨永