孙备
姓名 | 孙备 |
性别 | 学位:博士学位 |
学校 | 中南大学 |
部门 | 学历:博士研究生毕业 |
学位 | 主要任职:国际自动控制联合会TC6.2技术委员会委员,中国有色金属学会自动化学术委员会秘书长 |
学历 | 性别:男 |
职称 | 教授 |
联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 |
人气 | |
软件产品登记测试 软件著作权666元代写全部资料 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
个人简介 孙备,中南大学自动化学院教授、博士生导师。2015年12月获中南大学控制科学与工程专业工学博士学位,纽约大学联合培养博士(2012-2014),芬兰阿尔托大学博士后(2016-2018),中国科协青年托举人才、湖南省荷尖人才、湖湘青年英才、中南大学创新驱动人才。主要从事工业人工智能研究工作,主持国家重点研发计划课题,国家自然科学基金面上项目、青年基金,中国科协国际组织事务青年项目,湖南省自然科学基金青年基金等项目。近5年第一/通讯作者发表论文31篇,合作出版英文专著1部,参编教材1部,申请/授权国家发明专利40项,获批软件著作权8项。兼任国际自动控制联合会TC6.2技术委员会委员,中国有色金属学会自动化学术委员会秘书长,中国自动化学会应用专业委员会和标准化工作委员会委员,International Journal of Minerals, Metallurgy and Materials(IJMMM)青年编委。曾获教育部技术发明奖一等奖1项,湖南省科学技术创新团队奖1项,中国自动化学会自然科学奖一等奖1项,中国有色金属工业协会科学技术奖一等奖2项。获全国有色金属优秀青年科技奖、中国过程控制会议张钟俊院士优秀论文奖。指导学生获湖南省优秀硕士论文,以及中国自动化大会最佳应用论文奖、中国有色金属学术年会优秀论文奖等奖项。 研究方向 1.工业智能 2.系统建模与辨识 3.模式识别与机器学习 4.最优控制与强化学习 招生:有1-2名博士生、3名硕士研究生招生指标,请对上述研究方向感兴趣、踏实上进的同学与我联系,Email:sunbei@csu.edu.cn。 代表性论著 专著、教材: 1. 《Modeling, optimization and control of zinc hydrometallurgical purification processes》. Chunhua Yang, Bei Sun. London: Elsevier, 2021. 2. 《智能控制: 方法与应用》第十八章:流程工业过程智能控制. 周晓君, 孙备. 北京: 中国科学技术出版社, 2020. 论文: 1. 复杂生产流程协同优化与智能控制[J]. 自动化学报, 2023, 49(3): 528-539. 2. A dynamics-learning multirate estimation approach for the feeding condition perception of complex industry processes[J]. IEEE Transactions on Cybernetics, 2023, doi: 10.1109/TCYB.2023.3263571. 3. A spatial-temporal structural estimation model based on GATE-PCGRU for multirate industrial process[J]. IEEE Transactions on Instrumentation and Measurement, 2023, doi: 10.1109/TIM.2023.3291796. 4. A multimode structured prediction model based on dynamic attribution graph attention network for complex industrial processes[J]. Information Sciences, 2023, 640, no. 119001. 5. A multimode mechanism-guided product quality estimation approach for multi-rate industrial processes[J]. Information Sciences, 2022, 596: 489-500. 6. Process monitoring of abnormal working conditions in the zinc roasting process with an ALD-based LOF-PCA method[J]. Process Safety and Environmental Protection, 2022, 161: 640-650. 7. Multi-models and dual-sampling periods quality prediction with time-dimensional K-means and state transition-LSTM network[J]. Information Sciences, 2021, 580: 917-933. 8. An integrated multi-mode model of froth flotation cell based on fusion of flotation kinetics and froth image features[J]. Minerals Engineering, 2021, 172: no. 107169. 9. An efficient operation optimization method for the series-parallel fractionation system of industrial hydrocracking[J]. Chemical Engineering Research and Design, 2021, 171: 111-124. 10. Decentralized PCA modeling based on relevance and redundancy variable selection and its application to large-scale dynamic process monitoring[J]. Process Safety and Environmental Protection, 2021, 151: 85-100. 11. A trend-based event-triggering fuzzy controller for the stabilizing control of a large-scale zinc roaster[J]. Journal of Process Control, 2021, 97: 59-71. 12. A chance-constrained programming approach for a zinc hydrometallurgy blending problem under uncertainty[J]. Computers and Chemical Engineering, 2020, 140: no. 106893. 13. Multi-stage intelligent operation optimization for a hydrocracking fractionation system with a multi-fractionator series-parallel structure[J]. Canadian Journal of Chemical Engineering, 2020, 98(11): 2342-2359. 14. Optimizing zinc electrowinning processes with current switching via Deep Deterministic Policy Gradient learning[J]. Neurocomputing, 2020, 380: 190-200. 15. A comprehensive hybrid first principles/machine learning modeling framework for complex industrial processes[J]. Journal of Process Control, 2020, 86: 30-43. |