朱建新
时间:2024-04-08 23:21 来源: 作者: 点击:次
导航 个人简介 学习经历 工作经历 研究方向 主要论文 主要著作 承担课题,个人信息 姓名: 朱建新 部门: 信息科学技术学院 直属机构: 数学系 性别: 男 职称: 教授 联系电话: 020-85224177 电子邮箱: zjxmath@jnu.edu.cn 联系方式 学习经历 1984年7月本科毕业于(原)浙江大学应用数学系计算数学专业,并获理学学士学位;1991年6月研究生毕业于(原)浙江大学应用数学系计算数学专业,并获理学硕士学位;1998年6月研究生毕业于(原)浙江大学应用数学专业, 并获理学博士学位。 工作经历 1984年7月-2017年7月工作于(原)浙江大学应用数学系、浙江大学数学系、浙江大学数学科学学院,任教授、计算数学专业博士生导师。自2017年8月至今,工作于暨南大学信息科学学院数学系,任教授、计算数学专业硕士生导师、应用统计专业学位硕士生导师、计算机应用技术专业博士生导师。 研究方向 数学物理方程数值解法(包括反问题)、工程问题数学建模与科学计算 主要论文 代表著作有:[1] Higher Order Asymptotic Approximations of Eigenmodes for a Circular Waveguide Terminated by a Perfectly Matched Layer. IEEE Journal of Lightwave Technology, Vol.35(10):1980-1987, 2017.[2] Adaptive Mode Solver for Varying Refractive Index Profile's Waveguides with Modified Spectral Element Method. Journal of the Optical Society of America B, Vol.34(3):538-545, 2017.[3] A New Approach of Eigenmodes for Varying Refractive-Index Profile's Waveguides. IEEE Transactions on Microwave Theory and Techniques, Vol.64(10):3131-3138, 2016.[4] High-precision Computation of Optical Propagation in Inhomogeneous Waveguides. Journal of the Optical Society of America A, Vol.32(9):1653-1660, 2015.[5] Fast Computation of Wave Propagation in the Open Acoustical Waveguide with a Curved Interface. Wave Motion, Vol.57:171-181, 2015.[6] Efficient Approximations of Dispersion Relations in Optical Waveguides with Varying Refractive-index Profiles. Optics Express, Vol.23(9):11952-11964, 2015.[7] Asymptotic Solutions of Eigenmodes in Slab Waveguides Terminated by Perfectly Matched Layers. Journal of the Optical Society of America A, Vol.30(10):2090-2095, 2013.[8] Computation of Nonlinear Schrodinger Equation on an Open Waveguide Terminated by a PML.Computer Modeling in Engineering & Sciences, Vol.71(4):347-362, 2011.[9] A Unified Mode Solver for Optical Waveguides Based on Mapped Barycentric Rational Chebyshev Differentiation Matrix. IEEE Journal of Lightwave Technology, Vol.28(12):1802-1810, 2010.[10] Full-vectorial Modal Analysis for Circular Optical Waveguides Based on the Multidomain Chebyshev Pseudospectral Methods. Journal of the Optical Society of America B, Vol.27(9):1722-1730, 2010.[11] Asymptotic Solutions of the Leaky Modes and PML Modes in a Pekeris Waveguide. Wave Motion,Vol.45:207-216, 2008.[12] Perfectly Matched Layer for Acoustic Waveguide Modeling - Benchmark Calculations and Perturbation Analysis. Computer Modeling in Engineering & Sciences, Vol.22(3), 2007.[13] Leaky Modes of Slab Waveguides - Asymptotic Solution. IEEE Journal of Lightwave Technology,Vol.24(3), 2006.[14] Propagating Modes in Optical Waveguides Terminated by Perfectly Matched Layers. IEEE Photonics Technology Letters, Vol.17(12), 2005.[15] Validity of One-way Models in Weak Range Dependence Limit. Journal of Computational Acoustics,Vol.12(1), 2004. [16] A Local Orthogonal Transform for Acoustic Waveguides with an Internal Interface. Journal of Computational Acoustics,Vol.12(1), 2004. 讲授课程 数值逼近,数学模型,高等数学。 |