教师主页移动版

主页 > 江苏省 > 江苏科技大学

魏涛

姓名 魏涛
性别 发明专利4999代写全部资料
学校 江苏科技大学
部门 魏涛,副教授,能源与动力学院
学位 魏涛,副教授,能源与动力学院
学历 能动学院531
职称 魏涛,副教授,能源与动力学院
联系方式 实用新型1875包写包过
邮箱 wt863@just.edu.cn
   
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料

魏涛 副教授 能源与动力学院 个人邮箱: wt863@just.edu.cn 办公地点: 能动学院531 通讯地址: 江苏省镇江市丹徒区长晖路666号 邮政编码: 212100 传真: 您是第7405 位访问者 个人简介 魏涛,江苏科技大学副教授,硕士生导师,中国化学会会员,中国化工学会会员,主要研究方向为新能源科学与工程,多年来一直从事锂离子电池、钠离子电池电极材料的制备及表征,固体氧化物燃料电池(SOFC)的制备与优化等方面的研究。现主要从事全固态锂离子电池的研究,主持国家自然科学基金1项、江苏省博后基金1项,第二负责人负责2019年海装院燃料电池项目1项,已授权国家发明专利6项;在Nano Energy, Journal of Colloid And Interface Science, Chinese Chemical Letters, Nano Research, Journal of Power Sources, Journal of Material Chemistry A, The Journal of Physical Chemistry C等国际主流SCI期刊发表论文40余篇,ESI高被引7篇,个人H因子21,其中Nano Energy 单篇被引290余次。并担任Frontiers in Chemistry(IF:5.545, JCR二区), Energies(IF:3.252, JCR三区)客座编辑,Chinese Journal of Engineering(EI收录)青年编委,还受邀担任学术桥评审专家。同时担任Journal of the American Chemical Society, ACS Nano, ChemComm,J. Power Sources,The Journal of The Electrochemical Society等国际SCI 期刊审稿人。被“江苏海博绿色能源科技有限公司”和“泰州隆基乐叶光伏科技有限公司”聘为“技术顾问”。作为指导教师指导学生获竞赛三等奖4项,被评为优秀指导教师1次,主讲“动力电池”、“能源化学”、“燃料电池技术”等课程。主要研究方向:1. 锂、钠离子电池电极材料的合成以及全固态电池电解质的制备;2. 金属锂、钠负极的制备及优化;3. 金属有机框架(MOFs)的合成及材料化;4. 固体氧化物燃料电池(SOFC)的制备与优化。教育背景及工作经历:2019/06~至今               江苏科技大学     能源与动力学院     副教授2017/09~2019/06          江苏科技大学     能源与动力学院     讲师2015/09~2017/07         南京师范大学      化学与材料科学学院   博士后      导师:兰亚乾教授2013/05~2013/09         中科院上海硅酸盐研究所      联合培养博士             导师:王绍荣教授2011/09~2015/06         中国矿业大学      应用化学     博士(硕博连读)    导师:高庆宇、王绍荣教授2009/09~2011/06         中国矿业大学      材料科学与工程 硕士(保研)    导师:庄全超教授2005/09~2009/06         中国矿业大学      材料科学与工程 工学学士代表性论文:[25] Petaloid Bimetallic Metal-Organic Frameworks Derived ZnCo2O4/ZnO Nanosheets Enabled Intermittent Lithiophilic Model for Dendrite-Free Lithium Metal Anode. Journal of Colloid And Interface Science. 2024, 664, 596-606. https://doi.org/10.1016/j.jcis.2024.03.081[24] An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters. 2023, 109122. https://doi.org/10.1016/j.cclet.2023.109122[23] An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities. Nano Research. 2024, 17: 2763-2769. https://doi.org/10.1007/s12274-023-6187-8[22] Metal–organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries. Chinese Chemical Letters. 2023, 34, 107947. https://doi.org/10.1016/j.cclet.2022.107947(高被引)[21] Prestoring lithium into SnO2 coated 3D carbon fiber cloth framework as dendrite-free lithium metal anode. Particuology, 2024, 84, 89-97. https://doi.org/10.1016/j.partic.2023.03.008[20] MOF-derived materials enabled lithiophilic 3D hosts for lithium metal anode —— A Review  Chinese Journal of Chemistry. 2023, 41, 1861-1874. https://doi.org/10.1002/cjoc.202200816(邀稿,高被引)[19] MOF-derived MnO coated 3D carbon fiber cloth for composite lithium anode with high areal capacity and current density. CrystEngComm. 2024, 26, 681-690. https://doi.org/10.1039/D3CE01005H(邀稿)[18] A Gel Polymer Electrolyte Based on IL@NH2-MIL-53 (Al) for High-Performance All-Solid-State Lithium Metal Batteries. Chinese Journal of Chemical Engineering. 2024. https://doi.org/10.1016/j.cjche.2024.01.017[17] UiO-66-NH2@67 core-shell MOF as fillers in solid composite electrolytes for high-performance all-solid-state lithium metal batteries. Energy Technology. 2023, 11(4), 2201438. https://doi.org/10.1002/ente.202201438(邀稿)[16] The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries. Chinese Journal of Chemical Engineering. 2023, 60, 80-89, https://doi.org/10.1016/j.cjche.2023.01.011(高被引)[15] Editorial: Advanced electrochemical energy devices. Front. Chem.2023,(10) 1121482. https://doi.org/10.3389/fchem.2022.1121482. (Editorial Article)[14] The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries. Journal of Electroanalytical Chemistry. 2022, 926, 116935. https://doi.org/10.1016/j.jelechem.2022.116935[13] Metal–organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: a review. CrystEngComm. 2022, 24, 5014–5030. https://doi.org/10.1039/D2CE00663D(邀稿,高被引)[12] Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries. Materials Today Communications. 31 (2022) 103518. https://doi.org/10.1016/j.mtcomm.2022.103518(高被引)[11] Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries. International Journal of Minerals Metallurgy and Materials. 28 (2021) 1636−1646. https://doi.org/10.1007/s12613-021-2289-z[10] Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all solid-state lithium-ion battery—a review. International Journal of Minerals Metallurgy and Materials. 28 (2021) 1565-1583. https://doi.org/10.1007/s12613-020-2239-1(Invited review)(特邀综述)[9] Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/Succinonitrile for high-performance solid-state lithium metal batteries. ACS Appl. Energy Mater. 3 (2020) 9428−9435. https://doi.org/10.1021/acsaem.0c01872[8] POM-Based MOF-Derived Co3O4/CoMoO4 Nanohybrids as Anodes for High-Performance Lithium-Ion Batteries. ACS Omega. 5(40) (2020) 26230–26236. https://doi.org/10.1021/acsomega.0c03929[7] POM-Based Metal-Organic Framework/Reduced Graphene Oxide Nanocomposites with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage. Nano Energy. 34 (2017) 205–214. https://doi.org/10.1016/j.nanoen.2017.02.028(ESI高被引论文)[6] A highly stable polyoxometalate-based metal–organic framework with p–p stacking for enhancing lithium ion battery performance. J. Mater. Chem. A. 5 (2017) 8477–8483. https://doi.org/10.1039/C7TA00900C(ESI高被引论文)[5] Polyoxometalate-incorporated metallapillararene/metallacalixarene metal-organic frameworks as anode materials for lithium ion batteries. Inorganic Chemistry. 56 (14) (2017) 8311–8318. https://doi.org/10.1021/acs.inorgchem.7b00995[4] Recent progresses in the development of tubular segmented-in-series solid oxide fuel cell: Experimental and numerical study. Int. J. Miner. Metall. Mater.2024. 31, 427-442. https://doi.org/10.1007/s12613-023-2771-x(邀稿)[3] A high power density solid oxide fuel cell based on nano-structured La0.8Sr0.2Cr0.5Fe0.5O3-δ anode. Electrochimica Acta. 148 (2014) 33–38.https://doi.org/10.1016/j.electacta.2014.10.020[2] A modified liquid-phase-assisted sintering mechanism for La0.8Sr0.2Cr1−xFexO3−δ—A high density, redox-stable perovskite interconnect for solid oxide fuel cells. Journal of Power Sources. 250 (2014) 152-159.https://doi.org/10.1016/j.jpowsour.2013.11.012[1] An Electrochemical Impedance Spectroscopic Study of the Electronic and Ionic Transport Properties of Spinel LiMn2O4. J. Phys. Chem. C. 114 (2010) 8614–8621. https://doi.org/10.1021/jp9109157专利授权:[7] 一种利用改进的液相辅助烧结机制来制备SOFC陶瓷连接体的方法. (专利号: ZL 2019 1 0988744.1)[6] 一种分段串联管式固体氧化物燃料电池及其制备方法. (专利号: ZL 2017 1 1171183.3)[5] 一种浸渍法制备分段串联管式固体氧化物燃料电池的方法.(专利号:ZL 2017 1 1171188.6)[4] 一种槽式太阳能热电联产装置. (专利号:ZL 2018 1 1390005.4)[3] 一种太阳能联产装置用集热与发电功能切换机构.(专利号:ZL 2018 1 1390018.1)[2] 一种阳极支撑管式固体氧化物燃料电池及其组装方法. (专利号: ZL 2013 1 0023879.7)[1] 一种直接碳固体氧化物燃料电池堆.(专利号:ZL 2013 1 0033521.2)主持及参与科研项目:主持项目:[1] 国家自然科学基金青年基金:多酸基金属-有机框架材料的合成及其在钠离子电池负极中的应用, 2018.01-2020.12.项目批准号:21701083,起止时间2018.01.01-2020.12.30;[2] 江苏省博后基金:多酸基金属-有机框架材料作为钠离子电池负极的研究, 1601087C, 2015.09-2017.09.(已结题);[3] 江苏省普通高校研究生科研创新计划项目: 固体氧化物燃料电池陶瓷连接体材料的制备与性能, CXZZ12_0944, 2012.11-2014.11.(省立省助,已结题)。参与项目:[1] 国家自然科学基金面上项目, 22179054, 基于带本征性质信息的规整网格矩阵研究PCFC微结构与内部电化学和物理输运耦合性能的相互作用机制, 2022-01-01 至 2025-12-31, 60万元, 在研, 参与。[2] 国家自然科学基金青年项目, 21701084, 多酸-葫芦脲聚轮烷质子导电晶体材料的探索研究, 2018-01-01 至 2020-12-31, 23万元, 结题, 参与。[3] 江苏省自然科学基金重点研究专项(BK2011006),直接碳固体氧化物燃料电池及高浓度CO2技术研究,2012年1月-2014年12月。[4] 国家自然科学基金创新团队,“煤炭资源加工理论与利用研究(50921002)”。[5] 江苏省双创人才计划(江苏省委组织部),碳基燃料电池(01209)。 研究方向 教育经历 课程教学 专利成果 科研项目 科研团队 获奖动态 教学随笔 论文著作

魏涛