教师主页移动版

首页 - 合肥工业大学

乔焰

姓名 乔焰
教师编号 109941
性别 学位:博士学位
学校 合肥工业大学
部门 计算机与信息学院(人工智能学院)
学位 性别:女
学历 性别:女
职称 副教授
联系方式 【发送到邮箱】
邮箱 【发送到邮箱】
人气
软件产品登记测试
软件著作权666元代写全部资料
实用新型专利1875代写全部资料
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳

个人简介 副教授,硕士生导师。博士毕业于北京邮电大学“网络与交换技术国家重点实验室”,新加坡南洋理工大学(NTU)计算机工程学院(SCE)博士后,加拿大维多利亚(UVIC)大学计算机学院访问学者,德国德累斯顿工业大学工程教育学院访问学者。曾主持国家自然科学基金青年基金1项,安徽省自然科学基金面上项目1项,国家重点实验室开放课题基金2项,第一作者/通信作者发表SCI/EI检索论文30余篇,第一发明人获国家发明专利授权8项。 联系方式:qiaoyan@hfut.edu.cn,合肥工业大学翡翠科教楼A1609 主要研究方向为:下一代互联网技术、物联网网络技术、区块链技术、人工智能技术等 主持项目:(1)国家自然科学基金青年基金,基于主动探测的不确定环境下IP网丢包率推理机制研究,项目编号:61402013,2015/01/01-2017/12/31。(主持) (2)安徽省自然科学基金面上项目,基于深度学习的农业物联网数据异常检测机制研究,项目编号:2008085MF203,2020/07/01-2023/07/01。(主持) (3)国家重点实验室开放课题基金,大规模不确定网络环境下的丢包率推理机制研究,项目编号:SKLNST-2016-1-02,2017/01/01-2018/12/31。(主持) (4)国家重点实验室开放课题基金,大规模不规则传感器网络异常检测机制研究,项目编号:SKLNST-2018-1-10,2018/07/01-2021/07/01。(主持) 主要论文: [1] Qiao Yan*, Xinyu Yuan, Wu Kui. Routing-Oblivious Network Tomography with Flow-Based Generative Model. IEEE International Conference on Computer Communications (INFOCOM 2024, CCF A类顶级会议) [2] Qiao Yan*, Wu Kui, Jin Peng. Efficient Anomaly Detection for High-Dimensional Sensing Data with One-Class Support Vector Machine[J]. IEEE Transactions on Knowledge and Data Engineering, Volume: 35, Issue: 1, 01 January 2023,pp:404-417.(中科院2区,CCF A类顶级期刊,IF=6.977) [3]Yan Qiao*, Jun Jiao, Xinhong Cui, Yuan Rao, Robust Loss Inference in the Presence of Noisy Measurements & Hidden Fault Diagnosis, IEEE/ACM Transactions on Networking, Volume 28 , Issue 1, 2020,pp: 43 - 56(中科院2区,CCF A类顶级期刊,IF=3.597) [4]Yan Qiao*, Robust Loss Inference in the Presence of Noisy Measurements, IEEE International Conference on Computer Communications (INFOCOM 2018), April 2018, Honolulu, HI, USA (EI, CCF A类顶级会议) [5] Xinyu Yuan, Yan Qiao*, Diffusion-TS: Interpretable Diffusion for General Time Series Generation, International Conference on Learning Representations (ICLR 2024), Vienna, Austria (清华大学计算机学科群A类会议) [6]Yan Qiao; Kui Wu; Majid Khabbazian ; Non-Intrusive Balance Tomography Using Reinforcement Learning in the Lightning Network, ACM Transactions on Privacy and Security, 2024, 1(27): 1-32 (SCI,CCF B类期刊) [7] Rongyao Hu, Xinyu Yuan, Yan Qiao*, et al. UNSUPERVISED ANOMALY DETECTION FOR MULTIVARIATE TIME SERIES USING DIFFUSION MODEL, IEEE ICASSP 2024(CCF B类会议) [8] Yan Qiao, Kui Wu, Khabbazian Majid. Non-Intrusive and High-Efficient Balance Tomography in the Lightning Network[C]. Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security (ASIACCS 2021). 2021: 832-843.(CCF C类会议,录用率19.3%) [9]Qiang Dai, Xi Cheng, Yan Qiao*, Youhua Zhang. Crop Leaf Disease Image Super-Resolution and Identification With Dual Attention and Topology Fusion Generative Adversarial Network. IEEE Access, 8: 55724-55735,2020 (中科院2区,IF=3.745) [10]Kaixuan Wang, Yan Qiao*, Ningzhe Xing. How to Couple Two Networks for a Smart Grid. IEEE Access, 6: 34643-34650,2018 (中科院2区,IF=3.745) [11]Yan Qiao*, Jun Jiao, Huimin Ma, Adaptive path selection for link loss inference in network tomography applications, Plos One, Oct 4, 2016(中科院3区,IF=2.870) [12]Yan Qiao*, Jun Jiao, Huimin Ma, Adaptive Loss Inference Using Unicast End-to-End Measurements, Mathematical Problems in Engineering, Volume,2016(中科院4区,IF=1.009) [13]Zhiming Hu, Yan Qiao*, Jun Luo, Coarse-Grained Traffic Matrix Estimation for Data Center Networks,Computer Communications, 56: 25-34, 2015(中科院3区,IF=2.816) [14] Qiao Yan*, Cui X, Jin P, et al. Fast outlier detection for high-dimensional data of wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2020, 16(10): 1550147720963835. (中科院4区,IF=1.151) [15]Xinlei Yu,Yuqi Ye,Jing Wang, Yan Qiao*,Practical Loss Inference in Uncertain Networks, IEEE Symposium on Computers and Communications(ISCC 2017), July 2017, Heraklion, Crete, Greece (EI,CCF C类会议) [16] Zhiming Hu*, Yan Qiao, Jun Luo, ATME: Accurate Traffic Matrix Estimation in both Public and Private Datacenter Networks. IEEE Transactions on Cloud Computing, 6(1), pp: 60-73, 2015 (中科院1区,顶级期刊,IF=4.714) [17] 乔焰*, 焦俊, 饶元. 基于数据中心流量特征的端到端流量估计算法. 计算机科学, 2017, 44(2):171-175.(北大核心期刊) [16] 金鹏, 夏晓峰, 乔焰*, 崔信红. 基于深度信念网络的高维传感器数据异常检测算法. 传感技术学报, 2019 (6):892-901.(北大核心期刊) [18]Yan Qiao*, Lu Cheng, Xuesong Qiu, Luoming Meng. An Efficient Active Probing Based Method for Fault Diagnosis Using Bayesian Network, China Communications 2011 (SCI 中科院3区). [19]Yan Qiao, Xuesong Qiu*, Luoming Meng, Ran Gu. Efficient loss inference algorithm with unicast end-to end Measurements, Journal of Network and Systems Management 2013 (SCI) [20]Yan Qiao*, Xuesong Qiu, Luoming Meng. Efficient Probe Selection for Fault Localization Using the Property of Submodularity, International Journal of Communication Systems 2013 (SCI) [21]Yan Qiao*, Xuesong Qiu, Luoming Meng, Accurate diagnosis in computer networks using unicast end-to-end measurements[J]. IEICE transactions on communications, 2013, 96(2): 522-532. [22]Yan Qiao, Guanjue Wang, Xuesong Qiu, Ran Gu. Network Loss Tomography Using Link Independence, ISCC 2012, Cappadocia, Turkey.(CCF C类) [23]Yan Qiao, Zhiming Hu, Jun Luo. Efficient Traffic Matrix Estimation for Data Center Networks. IFIP Networking 2013, New York, USA (Best paper nominated)(CCF C类) [24]Yan Qiao, Lu Cheng, Xuesong Qiu, Luoming Meng. A Methodology Used to Optimize Probe Selection,GLOBECOM 2010, Miami, USA(CCF C类) 第一发明人获国家发明专利授权: [1] 一种PTN环网流量性能的自动分析方法 (申请号:2016105677084),2020年10月13日 [2] 一种不确定网络环境下的链路丢包率推理方法 (申请号:2018101262989),2021年6月1日 [3] 一种面向大规模高维传感器数据的在线式异常检测方法(申请号:2018115415566),2021年10月15日 [4] 基于深度学习的无线传感器高维数据实时异常检测方法(申请号:2019106101456),2022年9月20日 [5] 一种针对传感器数据的无监督异常检测方法(申请号:2019111164313),2023年1月13日 [6] 物联网数据异常检测模型训练方法、异常检测方法和系统(申请号:2022115452364),2023年3月7日 [7] 基于深度学习的网络流量矩阵估计、模型训练方法和系统(申请号:2023105455746),2023年7月21日 [8] 多变量时间序列数据异常检测、模型训练方法和系统(申请号:2023105312723),2023年8月18日 教育经历 [1]   2007.9-2012.7 北京邮电大学  |  计算机科学与技术  |  博士学位  |  博士研究生毕业 工作经历 [1]   2012.8-2013.8 新加坡南洋理工大学  |  计算机学院  |  博士后 社会兼职 [1]   IEEE/ACM Transactions on Networking审稿人 研究方向 [1]  人工智能技术 [2]  物联网技术 [3]  下一代互联网技术 其他联系方式 通讯/办公地址: 翡翠科教楼A1609

乔焰
乔焰
SCI学术指导