姓名 | 罗利佳 | 性别 | 发明专利4999代写全部资料 |
学校 | 浙江工业大学 | 部门 | 机械工程学院 |
学位 | 博士 | 学历 | 机械工程学院 |
职称 | 教授 | 联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 | 人气 | |
软件产品登记测试 | 软件著作权666元代写全部资料 | 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
个人简介 博士(博士后)、教授、博导。2006 年毕业于大连理工大学,获过程装备与控制工程专业学士学位;2008 年毕业于浙江大学,获机械电子工程专业硕士学位;2012 年毕业于上海交通大学,获控制理论与控制工程专业博士学位。2012 年入职浙江工业大学化工机械设计研究所从事教学科研工作,2015 年1 月至2016 年8月以博士后身份在美国特拉华大学化学工程系与过程系统工程领域的国际著名专家Babatunde A. Ogunnaike 教授(美国工程院院士)开展合作研究。2018 年4 月获得德国洪堡基金资助在德国杜伊斯堡埃森大学与故障检测与容错控制领域的国际著名专家Steven Ding 教授开展合作研究。长期致力于流程工业系统及装备的状态监控与故障诊断、工程结构健康监测、机械系统状态评估与智能运维,与省、市级特种设备检测研究院以及各大化工企业紧密合作,取得了一系列有价值的研究成果。近年来申请人主持完成国家自然科学基金2项,浙江省自然科学基金项目2项,承担横向项目多项,参与国家科技重大专项、浙江省科技计划重点研发项目等。累计发表SCI论文76篇,其中以第一/通讯作者在AIChE、Chem. Eng. J.、Chem. Eng. Sci.、Ind. Eng. Chem. Res.、J. Process Control等国际知名期刊上发表SCI论文45篇,论文引用1300余次。获授权国家发明专利10余项,浙江省技术发明三等奖1项。2017年入选浙江工业大学“青年英才支持计划(杰青),2018年入选德国洪堡学者(资深研究员系列)。 教学与课程 本科生课程:《控制工程基础》、《过程装备控制技术》研究生课程:《化工工艺的热安全》 育人成果 (1)第16届“挑战杯”全国大学生课外学术科技作品竞赛,一等奖,指导教师,2020年(2)中国机械行业卓越工程师教育联盟2020年“毕业设计优秀作品”,指导教师,2020年(3)中国大学生机械工程创新创意大赛-“三聚福大杯”第9届过程装备与实践创新大赛,一等奖,指导教师,2018年(4)中国大学生机械工程创新创意大赛优秀指导教师,2018年(5)浙江工业大学毕业生设计优秀指导教师,2014年 科研项目 (1)国家自然科学基金面上项目,52175152,基于混频非线性超声导波的压力管道早期微损伤检测与定量评价方法研究,2022-01至2025-12,在研,主持(2)浙江省特种设备安全检测技术研究重点实验室,开放基金项目,zjtjkf-202001,金属材料早期损伤的非线性超声检测与定量评价方法研究,2021-01至2022/12,在研,主持(3)浙江省自然科学基金委员会,浙江省基础公益研究计划项目,LGG21F030010,基于光纤传感的埋地油气管道异常事件监测与智能诊断技术研究及系统开发,2021-01至2023-12,10万元,在研,主持(4)万华化学(宁波)有限公司,横向项目,万华化学安全阀RBI评估及可靠性分析,2020-11月至 2021-12,在研,主持(5)科技部,国家重点研发计划重点专项子课题,2018YFC0808800,严苛环境下典型承压类特种设备结构安全性评价及失效预防技术,2018-01至2021-12,在研,参与(6)浙江省科技计划项目,2016C33050,钢制埋地燃气管道检测方法及定量失效风险分析研究,2016-09至2017-12,已结题,技术负责人(7)科技部,国家科技重大专项子课题,2014ZX06002005,交变温度下堆内构件螺钉错位性能试验,2016-08至2017-07,已结题,参加(8)国家自然科学基金委员会,青年基金项目,61304116,基于多元统计理论的间歇过程性能监控、质量预测和质量调控方法研究,2014-01至2016-12,已结题,主持(9)科技部,国家科技重大专项子课题,2014ZX06002001,SA508 Gr.3 Cl.2母材断裂韧性参数敏感性和疲劳裂纹扩展试验,156.0万元,2014-01至2016-12,已结题,参加(10)浙江省自然科学基金委员会,青年基金项目,LQ13B060004,气升式反应器水力学特性研究及结构优化设计,2013-01至2015-12,已结题,主持(11)企业项目,华能玉环分公司水冷壁应力、膨胀在线智能监测与拉裂治理技术研究与应用,2023.01至2023-12,94.6万元,主持,在研(12)企业项目,基于非线性超声导波的压力管道损伤检测技术与定量评价方法研究,2022.08至2022-12,28万元,主持 ,已结题(13)企业项目,重大设备在役状态下缺陷动态检测与监测方法研究,2023.01至2025-03,20万元,主持 ,在研 科研成果 第一\通讯作者论文:[1] Lijia Luo, Weida Wang, Shiyi Bao, Xin Peng, Yigong Peng. Robust and sparse canonical correlation analysis for fault detection and diagnosis using training data with outliers. Expert Systems With Applications, 2024, 236:121434. [2] Lijia Luo, Yincheng Wang, Wei Chen, Zuming Zhao, Wenfei Chen, Shiyi Bao. Tube-to-tube impact wear damage mechanism and nonlinear ultrasonic detection method of alloy 690 tubes. Engineering Failure Analysis, 2024, 156:107821. [3] Jingjing Fan, Wenfei Chen, Dingyue Chen, Hu Chen, Lijia Luo*, Shiyi Bao. Vibro-acoustic modulation-based bolt looseness detection method using frequency sweep probe waves. Nondestructive Testing and Evaluation, 2023, DOI:10.1080/10589759.2023.2244123.[4] Lijia Luo, Weida Wang, Huanwei Yu, Xianfeng Chen, Shiyi Bao. Abnormal event monitoring of underground pipelines using a distributed fiber-optic vibration sensing system. Measurement, 2023, 221:113488.[5] Mingwei Liu, Yuanxin Wang, Lijia Luo*, Shiyi Bao, Bo Jia, Xuesheng Li, Wuji Ding. Segmented Line Heat Source Model for Thermal Radiation Calculation of Jet Fires in Chemical Plants. ASME Journal of Heat and Mass Transfer, 2023, 145(9):1-32.[6] Enliang Yu, Lijia Luo*, Xin Peng, Chudong Tong. A multigroup fault detection and diagnosis framework for large-scale industrial systems using nonlinear multivariate analysis. Expert Systems With Applications, 2022, 20: 117859[7] Ling Yan, Lijia Luo*, Fengping Zhong, Zuming Zhao, Jingjing Fan, Liuyi Huang, Shiyi Bao, Jianfeng Mao.Detection of Fatigue Damage in Aluminum Alloy Structures Using Nonlinear Ultrasonic Modulation. In ASME 2021 International Mechanical Engineering Congress and Exposition, 2021.[8] Lijia Luo*, Xin Peng, Chudong Tong. A multigroup framework for fault detection and diagnosis in large-scale multivariate systems. Journal of Process Control, 2021, 100:65–79.[9] Zhenming Li, Shiyi Bao, Xin Peng, Lijia Luo*. Fault detection and diagnosis in multivariate systems using multiple correlation regression. Control Engineering Practice, 2021, 116: 104916.[10] Yonggui Chen, Zhangwei Ling, Shiyi Bao, Di Tang, Lijia Luo*. Time and frequency domain analyses of fluid force fluctuations in a normal triangular tube array in forced vibrations. Annals of Nuclear Energy, 2020, 145: 107526.[11] Shiyi Bao, Lijia Luo*. Monitoring of industrial processes using robust global–local preserving projection. Journal of Chemometrics, 2020, 34(9): e3278.[12] Lijia Luo*, Jinpeng Wang, Chudong Tong, Junwei Zhu. Multivariate fault detection and diagnosis based on variable grouping. Industrial & Engineering Chemistry Research, 2020, 59(16): 7693−7705.[13] Ling Yan, Xin Peng, Chudong Tong, Lijia Luo*. A multigroup fault detection and diagnosis scheme for multivariate systems. Industrial & Engineering Chemistry Research, 2020, 59(47): 20767–20778.[14] Lijia Luo*, Man Xu, Shiyi Bao, Jianfeng Mao, Chudong Tong. Improvements to the T2 statistic for multivariate fault detection. Industrial & Engineering Chemistry Research, 2019, 58(45): 20692−20709.[15] Lijia Luo*, Yonggui Chen, Shiyi Bao, Chudong Tong. Sparse PARAFAC2 decomposition: application to fault detection and diagnosis in batch processes. Chemometrics and Intelligent Laboratory Systems, 2019, 195: 103893.[16] Lijia Luo*, Shiyi Bao, Chudong Tong. Sparse robust principal component analysis with applications to fault detection and diagnosis. Industrial & Engineering Chemistry Research, 2019, 58(3): 1300–1309.[17] Lijia Luo*. Monitoring uneven multistage/multiphase batch processes using trajectory-based fuzzy phase partition and hybrid MPCA models. The Canadian Journal of Chemical Engineering, 2019, 97: 178−187.[18] Lijia Luo*, Shiyi Bao. Knowledge-data-integrated sparse modeling for batch process monitoring. Chemical Engineering Science, 2018, 189: 221–232.[19] Shiyi Bao, Lijia Luo*, Jianfeng Mao, Di Tang. Zhenyu Ding. Robust monitoring of industrial processes in the presence of outliers in training data. Industrial & Engineering Chemistry Research, 2018, 57(24): 8230–8239.[20] Lijia Luo*, Shiyi Bao, Jianfeng Mao, Di Tang. Just-in-Time selection of principal components for fault detection: The criteria based on principal component contributions to the sample Mahalanobis distance. Industrial & Engineering Chemistry Research, 2018, 57(10): 3656–3665.[21] Lijia Luo*. Trajectory-based phase partition and multiphase multilinear models for monitoring and quality prediction of multiphase batch processes. Journal of Chemometrics, 2018, 32: e3013.[22] Lijia Luo*, Shiyi Bao, Jianfeng Mao, Zhenyu Ding. Industrial process monitoring based on knowledge-data integrated sparse model and two-level deviation magnitude plots. Industrial & Engineering Chemistry Research, 2018, 57(2): 611−622.[23] Lijia Luo*, Shiyi Bao, Jianfeng Mao, Di Tang. Monitoring batch processes using sparse parallel factor decomposition. Industrial & Engineering Chemistry Research, 2017, 56(44): 12682−12692.[24] Lijia Luo*, R.J. Lovelett, B.A. Ogunnaike. Hierarchical monitoring of industrial processes for fault detection, fault grade evaluation and fault diagnosis. AIChE Journal, 2017, 63(7): 2781−2795.[25] Lijia Luo, Shiyi Bao*, Zhenyu Ding, Jianfeng Mao. A variable-correlation-based sparse modeling method for industrial process monitoring. Industrial & Engineering Chemistry Research, 2017, 56(24): 6981–6992.[26] Lijia Luo, Shiyi Bao*, Jianfeng Mao, Di Tang. Fault detection and diagnosis based on sparse PCA and two-level contribution plots. Industrial & Engineering Chemistry Research, 2017, 56(1): 225−240.[27] Lijia Luo*, Shiyi Bao, Jianfeng Mao, Di Tang. Nonlocal and local structure preserving projection and its application to fault detection. Chemometrics and Intelligent Laboratory Systems, 2016, 157: 177–188.[28] Shiyi Bao, Lijia Luo*, Jianfeng Mao, Di Tang, Improved fault detection and diagnosis using sparse global-local preserving projections. Journal of Process Control, 2016, 47: 121–135.[29] Lijia Luo, Shiyi Bao*, Jianfeng Mao, Di Tang, Zengliang Gao. Fuzzy phase partition and hybrid modeling based quality prediction and process monitoring methods for multiphase batch processes. Industrial & Engineering Chemistry Research, 2016, 55(14): 4045−4058.[30] Lijia Luo*, Shiyi Bao, Jianfeng Mao, Di Tang. Nonlinear process monitoring based on kernel global-local preserving projections. Journal of Process Control, 2016, 38: 11–21.[31] Lijia Luo*, Shiyi Bao, Jianfeng Mao, Di Tang. Phase partition and phase-based process monitoring methods for multiphase batch processes with uneven durations. Industrial & Engineering Chemistry Research, 2016, 55 (7): 2035–2048.[32] Lijia Luo*, Shiyi Bao, Jianfeng Mao, Di Tang. Quality prediction and quality-relevant monitoring with multilinear PLS for batch processes. Chemometrics and Intelligent Laboratory Systems, 2016, 150: 9–22.[33] Lijia Luo*, Jingqi Yuan. Modeling of mass transfer in an internal loop airlift reactor. Chemical Engineering & Technology, 2015, 38(3): 511–520.[34] Lijia Luo*, Shiyi Bao, Zengliang Gao. Quality prediction based on HOPLS-CP for batch processes. Chemometrics and Intelligent Laboratory Systems, 2015, 143: 28–39.[35] Lijia Luo*, Shiyi Bao, Jianfeng Mao, Di Tang. Nonlinear process monitoring using data-dependent kernel global-local preserving projections. Industrial & Engineering Chemistry Research, 2015, 54(44): 11126–11138.[36] Lijia Luo*, Shiyi Bao, Zengliang Gao, Jingqi Yuan. Batch process monitoring with GTucker2 model. Industrial & Engineering Chemistry Research, 2014, 53(39): 15101–15110.[37] Lijia Luo*, Process monitoring with global-local preserving projections. Industrial & Engineering Chemistry Research, 2014, 53(18): 7696–7705.[38] Lijia Luo*, Shiyi Bao, Zengliang Gao, Jingqi Yuan. Tensor global-local preserving projections for batch process monitoring. Industrial & Engineering Chemistry Research, 2014, 53(24): 10166–10176.[39] Lijia Luo*, Shiyi Bao, Zengliang Gao, Jingqi Yuan. Batch process monitoring with tensor global-local structure analysis. Industrial & Engineering Chemistry Research, 2013, 52(50): 18031–18042.[40] Lijia Luo*, Jingqi Yuan, Pin Xie, Junwei Sun, Wei Guo. Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with sieve plates. Chemical Engineering Research and Design, 2013, 91:2377–2388.[41] Lijia Luo, Yuanyuan Xu, Jingqi Yuan*, Pin Xie, Junwei Sun, Wei Guo. Study of pressure fluctuations in an internal loop airlift bioreactor. The Canadian Journal of Chemical Engineering, 2013, 91: 212–222.[42] Lijia Luo, Ying Yan, Yuanyuan Xu, Jingqi Yuan*. Time-frequency analysis based flow regime identification methods for airlift reactors. Industrial & Engineering Chemistry Research, 2012, 51: 7104–7112.[43] Lijia Luo, Ying Yan, Ping Xie, Junwei Sun, Yuanyuan Xu, Jingqi Yuan*. Hilbert-Huang transform, Hurst and chaotic analysis based flow regime identification methods for an airlift reactor. Chemical Engineering Journal, 2012, 181-182: 570–580.[44] Lijia Luo, Yuanyuan Xu, Jingqi Yuan*. Identification of flow regime transitions in an annulus sparged internal loop airlift reactor based on higher order statistics and Winger trispectrum. Chemical Engineering Science, 2011, 66: 5224–5235.[45] Lijia Luo, Fengna Liu, Yuanyuan Xu, Jingqi Yuan*. Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with different spargers. Chemical Engineering Journal, 2011, 175:494–504.部分授权发明专利:[1] 罗利佳; 赵祖鸣; 包士毅; 凡静静. 基于混频非线性超声导波的金属试样微损伤检测装置. 2024.1.30, 中国, ZL202111005830.X.[2] 罗利佳; 尤永康; 包士毅; 应翔. 一种自热式甲醇重整制氢反应系统, 2023.11.24., 中国, ZL 201910537996.2[3] 罗利佳; 包士毅; 毛剑峰; 唐迪; 基于有序模糊C均值聚类的青霉素发酵过程阶段划分方法, 2019.10.29, 中国, ZL201510702441.0.[4] 罗利佳; 包士毅; 高增梁; 一种基于张量全局-局部保持投影的数据降维的人脸识别方法, 2017.02.01, 中国, ZL201310574562.2.[5] 罗利佳; 颜勤伟; 包士毅; 殷乾; 基于安全联锁系统的石化工艺过程参数测定实验装置, 2017.01.11, 中国, ZL201410629793.3.[6] 罗利佳; 包士毅; 高增梁; 一种基于张量全局-局部保持投影的间歇过程在线监控方法, 2015.12.02, 中国, ZL201310558171.1.[7] 包士毅, 李相清, 罗利佳, 丁振宇, 高增梁,一种新型核反应堆压力容器下封头结构,2015.6.30,中国,ZL201510371288.8[8] 包士毅, 李相清, 罗利佳, 高增梁,一种反应堆压力容器IVR条件下结构完整性试验平台,2015.6.30,中国,ZL201510371631.9[9] 包士毅, 殷勤, 罗利佳, 颜勤伟,通用阀门性能试验装置,2014.11.11,中国,ZL201410629376.9 社会服务
注册教师主页会员,申请查看完整信息,请准确输入邮箱地址用于接收信息,网址处请填写本页面的网页地址。
本页面网址为:https://www.jiaoshizhuye.com/a/zhejiang/zjgy/78773516/