姓名 | 陈耿 | 性别 | 男 |
学校 | 西北工业大学 | 部门 | 计算机学院 |
学位 | 工学博士学位 | 学历 | 博士研究生毕业 |
职称 | 正高 | 联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 | 人气 | |
软件产品登记测试 | 软件著作权666元代写全部资料 | 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
教育教学 Education and teaching 招生信息 招生:依托“空天地海一体化大数据应用技术国家工程实验室”等三项国家级平台,科研经费充裕,科研气氛浓厚,已指导多名硕博生在领域顶级期刊和会议上(如:Medical Image Analysis, MICCAI, IEEE TCSVT, IJCAI等)发表高水平论文,和国内外知名研究机构保持有稳定密切的合作,可以提供了丰富的对外交流机会。实验室拟招收硕士研究生若干名。欢迎有志于从事医学图像处理、人工智能等领域研究工作的同学与我联系,联系方式:geng.chen@nwpu.edu.cn。同时,长期招收本科实习生,有志于保研国内知名高校和出国同学优先。学生培养:采取紧与松相结合的方式:在初期,采用比较“紧”的指导方式,非常具体地指导学生做研究,包括确定前期的研究方向和解决问题的具体思路,以及要读的文章和使用的数据等;使用这种带、拉、推的方式让学生快速进入研究状态,出初期成果(包括在顶级会议、杂志上发表论文)。随着学生在科研上的经验积累,开始使用“松”的指导方式,慢慢放手让学生独立思考解决问题的方案,培养他们的创造力与研究能力,做出真正属于他们自己的优秀科研成果。
织梦好,好织梦
综合介绍 General Introduction 博士毕业于西北工业大学,曾在美国北卡罗来纳州大学教堂山分校IDEA实验室工作五年,先后任职研究助理和博士后,在阿联酋起源人工智能研究院以研究科学家身份工作两年。2021年加入空天地海一体化大数据国家工程实验室,专注于智能脑磁共振影像分析、几何深度学习和脑发育相关的研究工作。曾参与了多个美国卫生研究院(NIH)资助的科研项目,其中包括了人类连接组计划(HCP)的重要子项目——婴儿连接组计划(BCP)。已发表学术论文80余篇到Medical Image Analysis(中科院一区Top期刊,IF:13.83)、IEEE-TMI(中科院一区Top期刊,IF:10.05)、MICCAI(医学影像分析领域Top会议)等领域内的知名期刊和会议上。担任 MICCAI2023领域主席、PRCV2022论坛主席、IJCAI Novel PC Member、MICS委员会委员、三个国际期刊的特刊编辑、Brain-X期刊青年编委、Medical Image Analysis、IEEE-TMI、IEEE-TNNLS、IEEE-TIP、MICCAI、IPMI、CVPR、ICCV、AAAI、IJCAI等30多个知名期刊和会议的审稿人。曾获MICCAI旅行奖、MediaEval息肉分割竞赛精度指标第一名、计图开发者大会最具影响力论文奖、IEEE-TMI杰出审稿人奖等。 个人相册 内容来自dedecms
学术成果 Academic Achievements 部分期刊论文(完整列表请参见ResearchGate和Google Scholar)- Automatic Detection of Tooth-Gingiva Trim Lines on Dental Surfaces. with G. Chen et. al. IEEE-TMI (医学图像分析领域两大顶级期刊之一), 2023.- Deep Learning Prediction of Diffusion MRI Data with Microstructure-Sensitive Loss Functions. with G. Chen et. al. Medical Image Analysis (医学图像分析领域两大顶级期刊之一), 2023.- Fusion-Embedding Siamese Network for Light Field Salient Object Detection. with G. Chen et. al. IEEE-TMM (中科院一区), 2023.- Automatic Schelling point detection from meshes. with G. Chen et. al. IEEE-TVCG (CCF-A类期刊), 2022.- Camouflaged object detection via context-aware cross-level fusion. with G. Chen et. al. IEEE-TCSVT (中科院一区), 32(10):6981-6993, 2022.- Multi-modal Transformer for accelerated MR imaging. with C.-M. Feng et. al. IEEE-TMI (医学图像分析领域两大顶级期刊之一), 2022.- COVID-19 lung infection segmentation with a novel two-stage cross-domain transfer learning framework. with J.-N. Liu et. al. Medical Image Analysis (医学图像分析领域两大顶级期刊之一), 74:102205, 2021.- Gaussianization of diffusion MRI data using spatially adaptive filtering. with F.-H. Liu et. al. Medical Image Analysis (医学图像分析领域两大顶级期刊之一), 68:101828, 2021.- Marine animal segmentation. with L. Li et. al. IEEE-TCSVT (中科院一区), 32(4):2303-2314, 2021.- Inf-Net: Automatic COVID-19 lung infection segmentation from CT images. with D.-P. Fan et. al. IEEE-TMI (医学图像分析领域两大顶级期刊之一), 39(8):2626–2637, 2020, ESI Highly-Cited Paper.- Hi-Net: Hybridfusion network for multi-modal MR image synthesis. with T. Zhou et. al. IEEE-TMI (医学图像分析领域两大顶级期刊之一), 39(9):2772–2781, 2020.- Probing tissue microarchitecture of the baby brain via spherical mean spectrum imaging. with K.-M. Huynh et. al. IEEE-TMI (医学图像分析领域两大顶级期刊之一), 39(11):3607–3618, 2020.- XQ-SR: Joint x-q space super-resolution with application to infant diffusion MRI. with G. Chen et. al. Medical Image Analysis (医学图像分析领域两大顶级期刊之一), 57:44–55, 2019.- Noise reduction in diffusion MRI using non-local self-similar information in joint x-q space. with G. Chen et. al. Medical Image Analysis (医学图像分析领域两大顶级期刊之一), 53:79–94, 2019.- Denoising of diffusion MRI data via graph framelet matching in x-q space. with G. Chen et. al. IEEE-TMI (医学图像分析领域两大顶级期刊之一), 38(12):2838–2848, 2019.- Super-resolution reconstruction of neonatal brain magnetic resonance images via residual structured sparse representation. with Y.-Q. Zhang et. al. Medical Image Analysis (医学图像分析领域两大顶级期刊之一), 55:76–87, 2019.- Multisite harmonization of diffusion MRI data via method of moments. with K.-M. Huynh et. al. IEEE-TMI (医学图像分析领域两大顶级期刊之一), 38:1599–1609, 2019.- Longitudinal prediction of infant diffusion MRI data via graph convolutional adversarial networks. with Y. Hong et. al. IEEE-TMI (医学图像分析领域两大顶级期刊之一), 38(12):2717–2725, 2019.- The UNC/UMN baby connectome project (BCP): An overview of the study design and protocol development. with B.-R. Howell et. al. NeuroImage (中科院一区), 185:891–905, 2018, ESI Highly-Cited Paper.- Joint prediction of longitudinal development of cortical surfaces and white matter fibers from neonatal MRI. with I. Rekik et. al. NeuroImage (中科院一区), 152:411–424, 2017.部分会议论文- Dichotomous lmage Segmentation with Frequency Priors. with Y. Zhou et. al. IJCAI (CCF-A类会议), 2023.- Super-Resolution Reconstruction of Fetal Brain MRI with Prior Anatomical Knowledge. with S.-J. Huang et. al. IPMI (医学图像分析领域两大顶级会议之一), 530–541, 2023.- Hybrid graph Transformer for tissue microstructure estimation with undersampled diffusion MRI data. with G. Chen et. al. MICCAI (医学图像分析领域两大顶级会议之一), 2022.- Progressively Normalized Self-Attention Network for Video Polyp Segmentation. with G.-P. Ji et. al. MICCAI (医学图像分析领域两大顶级会议之一), 2021.- Context-aware cross-level fusion network for camouflaged object detection. with Y.-J. Sun et. al. IJCAI (CCF-A类会议), 2021.- Dual-octave convolution for accelerated parallel MR image reconstruction. with C.-M. Feng et. al. AAAI (CCF-A类会议), 2021.- Specificity-preserving RGB-D Saliency Detection. with T. Zhou et. al. ICCV (CCF-A类会议), 2021.- Estimating tissue microstructure with undersampled diffusion data via graph convolutional neural networks. with G. Chen et. al. MICCAI (医学图像分析领域两大顶级会议之一), 280–290, 2020.- PraNet: Parallel reverse attention network for polyp segmentation. with D.-P. Fan et. al. MICCAI (医学图像分析领域两大顶级会议之一), 263–273, 2020.- Reconstructing high-quality diffusion MRI data from orthogonal slice-undersampled data using graph convolutional neural networks. with Y. Hong et. al. MICCAI (医学图像分析领域两大顶级会议之一), 529–537, 2019.- Probing brain micro-architecture by orientation distribution invariant identification of diffusion compartments. with K.-M. Huynh et. al. MICCAI (医学图像分析领域两大顶级会议之一), 547–555, 2019.- Characterizing non-Gaussian diffusion in heterogeneously oriented tissue microenvironments. with K.-M. Huynh et. al. MICCAI (医学图像分析领域两大顶级会议之一), 556–563, 2019.- Multifold acceleration of diffusion MRI via deep learning reconstruction from slice-undersampled data. with Y. Hong et. al. IPMI (医学图像分析领域两大顶级会议之一), 530–541, 2019.- Neighborhood matching for curved domains with application to denoising in diffusion MRI. with G. Chen et. al. MICCAI (医学图像分析领域两大顶级会议之一), 629–637, 2017.- q-space upsampling using x-q space regularization. with G. Chen et. al. MICCAI (医学图像分析领域两大顶级会议之一), 620–628, 2017.- Graphconstrained sparse construction of longitudinal diffusion-weighted infant atlases. with J. Kim et. al. MICCAI (医学图像分析领域两大顶级会议之一), 49–56, 2017.- XQ-NLM: Denoising diffusion MRI data via x-q space non-local patch matching. with G. Chen et. al. MICCAI (医学图像分析领域两大顶级会议之一), 587–595, 2016.- A hybrid multishape learning framework for longitudinal prediction of cortical surfaces and fiber tracts using neonatal data. with I. Rekik et. al. MICCAI (医学图像分析领域两大顶级会议之一), 210–218, 2016.
团队信息 Team Information 已指导硕博士:黑龙江大学 Jiannan Liu【成果:Medical Image Analysis 2021、MICCAI 2022(Early Acceptance)】内蒙古大学 Yujia Sun【成果:IJCAI 2021, IEEE TCSVT 2022】浙江大学 Bo Dong【成果:IEEE TCSVT 2021、Pattern Recognition 2022、Neurocomputing 2020】中国海洋大学 Lin Li【成果:BenchCouncil 2020(优秀可复现研究奖), IEEE TCSVT 2021】法国雷恩大学 Yi Zhang【成果:BMVC 2021】中国科学技术大学 Qian Chen【成果:Pattern Recognition 2021】
内容来自dedecms
本文来自织梦
注册教师主页会员,申请查看完整信息,请准确输入邮箱地址用于接收信息,网址处请填写本页面的网页地址。
本页面网址为:https://www.jiaoshizhuye.com/a/shanxi/nwpu/4274/