姓名 | 穆斌 | 性别 | 男 |
学校 | 同济大学 | 部门 | 软件学院 |
学位 | 发明专利包写包过 特惠申请 | 学历 | 版权登记666包过 代写全部资料 |
职称 | 教授 | 联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 | 人气 | |
软件产品登记测试 | 软件著作权666元代写全部资料 | 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
个人简介 Personal Profile 穆斌,男,同济大学教授,博士生导师,现任同济大学软件学院副院长。主要从事人工智能与地球科学的交叉科学研究。研究方向:人工智能及其可解释性、机器学习、大气及海洋大数据分析等。当前主持国家重点研发计划课题一项、作为第二责任人参与国家自然科学基金重点联合基金项目及面上项目各一项、以及上海市科委重点项目一项。已发表学术论文80余篇,获授国家发明专利6项。主讲国家级双语教学示范课程一门。当前指导的在读博士生7名、硕士生5名。(办公地点:同济大学嘉定校区济事楼451室(中),E-mail: binmu@tongji.edu.cn)。 研究方向Research Directions 人工智能及其可解释性、机器学习、神经网络,大气及海洋大数据分析 2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行整体布局设计。 整体布局设计。 团队展示 同济大学软件学院智慧大气与智慧海洋研究团队同济大学软件学院智慧大气与智慧海洋研究团队主要由两名正教授及其指导下的10名博士生和10名硕士生所组成。主要从事人工智能与地球科学的交叉科学研究。研究方向涵盖:人工智能及其可解释性、机器学习、大气及海洋大数据分析等。当前主持国家自然科学基金重点联合基金项目一项、国家自然科学基金面上项目一项、国家重点研发计划课题两项、以及上海市科委重点项目一项。团队在该研究方向已发表学术论文120余篇,获授国家发明专利11项。团队研究地点:同济大学嘉定校区济事楼307实验室。 项目情况 主持或参与科研项目(课题)情况:1. 国家重点研发计划“全球变化及应对”专项项目“大数据与深度学习方法创新地球系统模式发展及应用研究”之课题二“复杂地球系统过程与现象的时空相关性研究”,课题编号2020YFA0608002,2020-11至2025-04,主持。2. 国家自然科学基金联合基金【重点】项目“基于因果推断和物理引导的面向天气预报与气候预测的深度学习理论算法及可解释性研究”,项目编号:U2142211,2022.01-2025.12,第二负责人。3. 国家自然科学基金【面上】项目“多模态数据驱动的海气耦合台风概率预报模型”,项目编号:42075141,2021.01-2024.12,第二负责人。4. 上海市2020年度“科技创新行动计划”社会发展科技攻关“公共安全/突发公共安全事件应急处理处置”专题项目“基于风云卫星智能精准观测针对极端天气事件的长三角航空运行安全应对研究”之课题二“针对CNOP的高效智能算法开发与应用“,课题编号 20dz1200702, 2020-09-01至2023-08-31,第二负责人。5. 2019年重点领域学科交叉重大“中央高校基本科研业务费专项资金”项目“基于深度神经网络的台风路径强度和降水精准预报研究”,项目编号22120190207,2019-08-01日至2021-07-31,主持。6. 国家重点基础研究发展计划(973计划)课题“信息服务的运行支撑平台及在交通和医疗信息服务中的实证研究”,课题编号 2010CB328106,第二负责人。7. 江苏省信息化建设重点示范工程项目“太仓市智慧城市大数据智能分析系统研发”,第二负责人。 报考意向 招生信息 软件学院 硕士研究生 序号 专业 招生人数 年份 1 软件工程 2 2024 2 软件工程 1 2024 博士研究生 序号 专业 招生人数 年份 1 软件工程 2 2024 2 软件工程 1 2024 报考意向 姓名: 手机号码: 邮箱: 毕业院校: 所学专业: 报考类型: 博士 硕士 个人简历*: 上传附件 支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg 成绩单*: 上传附件 支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg 其他材料: 上传附件 支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg 备注: 提交 科研项目 主持或参与科研项目(课题)情况:1. 国家重点研发计划“全球变化及应对”专项项目“大数据与深度学习方法创新地球系统模式发展及应用研究”之课题二“复杂地球系统过程与现象的时空相关性研究”,课题编号2020YFA0608002,2020-11至2025-04,主持。2. 国家自然科学基金联合基金【重点】项目“基于因果推断和物理引导的面向天气预报与气候预测的深度学习理论算法及可解释性研究”,项目编号:U2142211,2022.01-2025.12,第二负责人。3. 国家自然科学基金【面上】项目“多模态数据驱动的海气耦合台风概率预报模型”,项目编号:42075141,2021.01-2024.12,第二负责人。4. 上海市2020年度“科技创新行动计划”社会发展科技攻关“公共安全/突发公共安全事件应急处理处置”专题项目“基于风云卫星智能精准观测针对极端天气事件的长三角航空运行安全应对研究”之课题二“针对CNOP的高效智能算法开发与应用“,课题编号 20dz1200702, 2020-09-01至2023-08-31,第二负责人。5. 2019年重点领域学科交叉重大“中央高校基本科研业务费专项资金”项目“基于深度神经网络的台风路径强度和降水精准预报研究”,项目编号22120190207,2019-08-01日至2021-07-31,主持。6. 国家重点基础研究发展计划(973计划)课题“信息服务的运行支撑平台及在交通和医疗信息服务中的实证研究”,课题编号 2010CB328106,第二负责人。7. 江苏省信息化建设重点示范工程项目“太仓市智慧城市大数据智能分析系统研发”,第二负责人。 研究成果 学术论文:期刊论文:(1) Bin Mu#, Yuehan Cui, Shijin Yuan*, et al. Simulation, precursor analysis and targeted observation sensitive area identification for two types of ENSO using ENSO-MC v1.0[J]. Geoscientific Model Development, 2022, 15(10): 4105-4127.(2) Bin Mu#, Bo Qin, Shijin Yuan*. ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler[J]. Geoscientific Model Development, 2021, 14(11): 6977-6999.(3) Shijin Yuan#, Huazhen Zhang, Yaxuan Liu, Bin Mu*. Feature extraction-based intelligent algorithm framework with neural network for solving conditional nonlinear optimal perturbation[J]. Soft Computing, 2022: 1-18.(4) Bin Mu#, Jing Li, Shijin Yuan*, et al. The NAO Variability Prediction and Forecasting with Multiple Time Scales Driven by ENSO Using Machine Learning Approaches[J]. Computational Intelligence and Neuroscience, 2022.(5) Bin Mu#, Jing Li, Shijin Yuan*, et al. Optimal precursors identification for North Atlantic oscillation using the parallel intelligence algorithm[J]. Scientific Programming, 2022.(6) Shijin Yuan#, Bo Shi, Zijun Zhao, Bin Mu*, et al. Ensemble Forecast for Tropical Cyclone Based on CNOP-P Method: A Case Study of WRF Model and Two Typhoons[J]. Journal of Tropical Meteorology, 2022, 28(2): 121-138.(7) Bin Mu#, Bo Qin, Shijin Yuan*, et al. ENSO Deep Learning Forecast Model: A Survey [J]. Clivar Exchange, 2021.(8) Shijin Yuan#, Cheng Wang, Bin Mu*, et al. Typhoon intensity forecasting based on LSTM using the rolling forecast method[J]. Algorithms, 2021, 14(3): 83.(9) Bin Mu#, Jing Li, Shijin Yuan*, Xiaodan Luo. Prediction of North Atlantic Oscillation Index Associated with the Sea Level Pressure Using DWT-LSTM and DWT-ConvLSTM Networks, Mathematical Problems in Engineering, 2020.10.05/Volume 2020.(10) Bin Mu#, Jing Li, Shijin Yuan*, Xiaodan Luo, Guokun Dai, CNOP-P-Based Parameter Sensitivity Analysis for North Atlantic Oscillation in Community Earth System Model Using Intelligence Algorithms, Advances in Meteorology, 2020.10.15/Volume 2020.(11) Bin Mu#, Bo Qin, Shijin Yuan*, Xiaoyun Qin, A Climate Downscaling Deep Learning Model considering the Multiscale Spatial Correlations and Chaos of Meteorological Events, Mathematical Problems in Engineering, 2020.11.17/Volume 2020.(12) Bin MU# , Juhui REN , Shijin YUAN* , Rong-Hua ZHANG, Lei CHEN , and Chuan GAO,The Optimal Precursors for ENSO Events Depicted Using the Gradientdefinition-based Method in an Intermediate Coupled Model,ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 36, DECEMBER 2019, 1–12.(13) Shijin Yuan#,Xiaodan Luo,Bin Mu*,Jing Li,Guokun Dai,Prediction of North Atlantic Oscillation Index with Convolutional LSTM Based on Ensemble Empirical Mode Decomposition,Atmosphere 2019, 10(5), 252.(14) YUAN Shijin#, ZHANG Huazhen, LI Mi, MU Bin*, CNOP-P-based parameter sensitivity for double-gyre variation in ROMS with simulated annealing algorithm. Journal of Oceanology and Limnology, 2019, 37 (3): 957-967.(15) YUAN Shijin#, LI Mi, WANG Qiang, ZHANG Kun, ZHANG Huazhen, MU Bin*,Optimal precursors of double-gyre regime transitions with an adjoint-free method. Journal of Oceanology and Limnology, 2019, 37 (4): 1137-1153.(16) Zhang Linlin#, Mu Bin, Yuan Shijin*, et al. A novel approach for solving CNOPs and its application in identifying sensitive regions of tropical cyclone adaptive observations. Nonlinear Processes in Geophysics, 2018, 25(3): 693-712.(17) Mu Bin#, Zhang Linlin, Yuan Shijin*, et al. Intelligent Algorithms for Solving CNOP and Their Applications in ENSO Predictability and Tropical Cyclone Adaptive Observations. Journal of Tropical Meteorology, 2018, 25(1): 63-81.(18) Zhang Linlin#, Yuan Shijin*, Mu Bin, et al. CNOP-based sensitive areas identification for tropical cyclone adaptive observations with PCAGA method. Asia-Pacific Journal of Atmospheric Sciences, 2017, 53(1):63-73.(19) Zhang Linlin#, Mu Bin, Yuan Shijin*. A Modified Direct Search Algorithm based on Kernel Density Estimator with Three Mapping Strategies for Solving Nonlinear Optimization. Journal of Computers. (2018,EI)(20) Mu Bin#, Ren Juhui, Yuan Shijin*, Zhou feifan. Identifying Typhoon Targeted Observations Sensitive Areas Using the Gradient Definition Based Method, Asia-Pacific Journal of Atmospheric Sciences, 2018: 1-13.(21) Mu Bin#, Ren Juhui, Yuan Shijin*. An efficient approach based on the gradient definition for solving conditional nonlinear optimal perturbation, Mathematical Problems in Engineering, 2017.(22) Mu Bin#, Wen Shicheng, Yuan Shijin*, Li Hongyu. PPSO: PCA based particle swarm optimization for solving conditional nonlinear optimal perturbation. Computers & geosciences, 83 (2015): 65-71.(23) Wen Shicheng#, Yuan Shijin*, Li Hongyu, Mu Bin, Robust ensemble feature extraction for solving conditional nonlinear optimal perturbation, In ternational Journal of Computational Science and Engineering, 2015.01.01, 11(4): 349~359.会议论文:(1) Shijin Yuan#, Cheng Wang, Bin Mu, et al. Efficient Executions of Community Earth System Model onto Accelerators Using GPUs[C]//2020 6th International Conference on Robotics and Artificial Intelligence. 2020: 192-199.(2) Bin Mu#, Bo Qin, Shijin Yuan*, Multi-Scale Downscaling with Bayesian Convolution Network for ENSO SST Pattern, 2020 5th International Conference on Electromechanical Control Technology and Transportation (ICECTT), May. 15-17, 2020, Nanchang, online, China, pp. 359-362.(3) Shijin Yuan#, Bo Shi, Bin Mu*, Data Assimilation by Artificial Neural Network using Conventional Observation for WRF Model, 2020 5th International Conference on Machine Learning Technologies, June 19-21, 2020, Beijing, online, China, pp. 62-67.(4) Bin Mu#, Shaoyang Ma, Shijin Yuan*,Hui Xu, Applying Convolutional LSTM Network to Predict El Nino Events: Transfer Learning from the Data of Dynamical Model and Observation, 2020 10th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC 2020), July 17-19, 2020, Beijing, online, China, pp. 215-219.(5) B. Mu#, J. Li, S. Yuan*, X. Luo and G. Dai, "Parallel PCA-Based Bacterial Foraging Optimization Algorithm for Identifying Optimal Precursors of North Atlantic Oscillation," 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, 2019, pp. 1171-1177. CCF-C. 中国张家界(6) Mu, B. #, Peng, C., Yuan, S.*, & Chen, L. (2019, July). ENSO Forecasting over Multiple Time Horizons Using ConvLSTM Network and Rolling Mechanism. In 2019 International Joint Conference on Neural Networks (IJCNN) ,IEEE. CCF-C.匈牙利布达佩斯(7) Mu, B. #, Li, J., Yuan, S.*, Luo, X., & Dai, G. (2019, July). NAO Index Prediction using LSTM and ConvLSTM Networks Coupled with Discrete Wavelet Transform. In 2019 International Joint Conference on Neural Networks (IJCNN) , IEEE. CCF-C.匈牙利布达佩斯(8) Shijin Yuan#,Yunyi Chen,Bin Mu*, CACO-LD: Parallel Continuous Ant Colony Optimization with Linear Decrease Strategy for Solving CNOP, 24nd International Conference on Neural Information Processing, ICONIP 2017, Guangzhou, China, November, 2017. CCF-C.中国广州(9) Bin Mu#*, Site Li, Shijin Yuan, An improved effective approach for urban air quality forecast ,2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Guilin, China, 2017.7.29-2017.7.31. 中国桂林(10) Bin Mu#, Junhui Zhao, Shijin Yuan*, Jinghao Yan, Parallel Dynamic Search Fireworks Algorithm with Linearly Decreased Dimension Number Strategy for Solving Conditional Nonlinear Optimal Perturbation, 2017 International Joint Conference on Neural Networks (IJCNN),Anchorage, Alaska, USA,2017.5.14-2017.5.19. CCF-C. 美国阿拉斯加(11) Yuan Shijin#*, Mi Li, Bin Mu, Jingpeng Wang, PCAFP for Solving CNOP in Double-Gyre Variation and its Parallelization on Clusters, 2016 IEEE 18th International Conference on High-Performance Computing and Communications, Sydney, Australia, 2016.12.12-2016.12.14. CCF-C. 澳大利亚悉尼(12) Ren Juhui#, Yuan Shijin*, Mu Bin, Parallel modified artificial bee colony algorithm for solving conditional nonlinear optimal perturbation, 2016 IEEE 18th International Conference on High-Performance Computing and Communications, Sydney, Australia, 2016.12.12-2016.12.14. CCF-C. 澳大利亚悉尼(13) Yuan Shijin#*, Qian Yiwen, Mu Bin, Paralleled continuous tabu search algorithm with sine maps and staged strategy for solving CNOP, 15th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2015, Zhangjiajie, China, 2015.11.18-2015.11.20. CCF-C. 中国张家界(14) Yuan Shijin#*, Ji Feng, Yan Jinghao, Mu Bin, A Parallel Sensitive Area Selection-Based Particle Swarm Optimization Algorithm for Fast Solving CNOP, 22nd International Conference on Neural Information Processing (ICONIP), Istanbul, TURKEY, 2015.11.9-2015.11.12. CCF-C. 土耳其伊斯坦布尔(15) Yuan Shijin#*, Zhao Li, Mu Bin, Parallel Cooperative Co-evolution Based Particle Swarm Optimization Algorithm for Solving Conditional Nonlinear Optimal Perturbation, 22nd International Conference on Neural Information Processing (ICONIP), Istanbul, Turkey, 2015.11.9-2015.11.12. CCF-C. 土耳其伊斯坦布尔(16) Yuan Shijin#*, Yan Jinghao, Mu Bin, Li Hongyu, Parallel dynamic step size sphere-gap transferring algorithm for solving conditional nonlinear optimal perturbation, 17th IEEE International Conference on High Performance Computing and Communications, IEEE 7th International Symposium on Cyberspace Safety and Security and IEEE 12th International Conference on Embedded Software and Systems, HPCC-ICESS-CSS 2015, New York, 2015.8.24-2015.8.26. CCF-C. 美国纽约(17) Wen, Shicheng#,Yuan, Shijin*,Mu, Bin,Li, Hongyu,Robust PCA-based genetic algorithm for solving CNOP, 11th International Conference on Intelligent Computing, ICIC 2015,Fuzhou, China,2015.8.20-2015.8.23. 中国福州(18) Bin Mu#,Linlin Zhang,Shijin Yuan*,Hongyu Li, PCAGA: Principal Component Analysis Based Genetic Algorithm for Solving Conditional Nonlinear Optimal Perturbation, 2015 International Joint Conference on Neural Networks (IJCNN),Killarney, Ireland,2015.7.12-2015.7.17. CCF-C. 爱尔兰基拉尼(19) Fuxin Chen#, Shijin Yuan*, Bin Mu,User-QoS-based Web Service Clustering for QoS Prediction, ICWS 2015:the 22nd IEEE International Conference on Web Services, New York City, USA, 2015.6.27-2015.7.2. CCF-B. 美国纽约(20) Wen, Shicheng#,Yuan, Shijin*,Mu, Bin,Li, Hongyu,Ren, Juhui, PCGD: Principal components-based great deluge method for solving CNOP, IEEE Congress on Evolutionary Computation, CEC 2015,Sendai, Japan,2015.5.25-2015.5.28. 日本仙台(21) Bin Mu#,Su Li,Shijin Yuan,QoS-Aware Cloud Service Selection Based on Uncertain User Preference, RSKT 2014: the 9th International Conference on Rough Sets and Knowledge Technology,2014年10月, Lecture Notes in Artificial Intelligence,RSKT2014:pp.589-600, Shanghai, China, 2014.10.24-2014.10.26. 中国上海(22) Wen, Shicheng#,Yuan, Shijin*,Mu, Bin,Li, Hongyu,Chen, Lei, SAEP: Simulated Annealing Based Ensemble Projecting Method for Solving Conditional Nonlinear Optimal Perturbation, 14th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP),Dalian, China,2014.8.24-2014.8.27. CCF-C. 中国大连(23) Mu, Bin#,Wen, Shicheng,Yuan, Shijin*,Li, Hongyu, Orthogonal Neighborhood Preservation Projection Based Method for Solving CNOP, 10th International Conference on Intelligent Computing (ICIC),Taiyuan, China,2014.8.3-2014.8.6. 中国太原其他加拿大纽布伦瑞克大学高级访问学者 学生信息 当前位置:教师主页 > 学生信息 入学日期 所学专业 学号 学位 招生信息 当前位置:教师主页 > 招生信息 招生学院 招生专业 研究方向 招生人数 推免人数 考试方式 招生类别 招生年份
注册教师主页会员,申请查看完整信息,请准确输入邮箱地址用于接收信息,网址处请填写本页面的网页地址。
本页面网址为:https://www.jiaoshizhuye.com/a/shanghai/tjdx/107219/