姓名 | 赵莹 | 性别 | 女 |
学校 | 同济大学 | 部门 | 航空航天与力学学院 |
学位 | 博士 | 学历 | 博士研究生 |
职称 | 研究员 | 联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 | 人气 | |
软件产品登记测试 | 软件著作权666元代写全部资料 | 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
个人简介 Personal Profile 赵莹,同济大学“青年百人”特聘研究员,博士生导师,就职于同济大学航空航天与力学学院。入选上海市海外高层次人才引进计划,并获得上海市科协“扬帆计划”资助,国家自然科学基金在研项目1项。本科与研究生就读于同济大学航空航天与力学学院,博士就读于德国达姆施塔特工业大学材料系,师从胥柏香教授,之后在英国剑桥大学Norman Fleck教授的课题组工作。2019年12月全职回国。在J Mech Phys Solids,J Comp Phys, Comput Method Appl Mech Engrg, J Power Sources,J Mater Chem A等国际著名力学、能源、材料领域期刊发表SCI文章30余篇(其中一作/通讯14篇),SCI总引用700余次,h因子为14。 研究方向Research Directions 固体力学,计算力学,新能源力学 2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行整体布局设计。 整体布局设计。 项目情况 1、锂离子电池颗粒尺度失效的微观、细观机理2、新型有限元(等几何法与有限胞元法)的开发与应用3、相场法在裂纹扩展、枝晶生长、空穴演化中的应用4、多物理场、多相超结构优化设计及3D制备 报考意向 招生信息 航空航天与力学学院 硕士研究生 序号 专业 招生人数 年份 1 力学 2 2023 2 力学 2 2024 博士研究生 序号 专业 招生人数 年份 1 力学(博士) 2 2023 2 力学(博士) 2 2024 博士1: 固体力学(新型材料的力学建模与多尺度分析;非均匀材料和结构的力学行为;非均匀多场耦合力学;复合材料力博士2: 固体力学(新型材料的力学建模与多尺度分析;非均匀材料和结构的力学行为;非均匀多场耦合力学;复合材料力 报考意向 姓名: 手机号码: 邮箱: 毕业院校: 所学专业: 报考类型: 博士 硕士 个人简历*: 上传附件 支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg 成绩单*: 上传附件 支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg 其他材料: 上传附件 支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg 备注: 提交 科研项目 2022.1.-2024.12.,国家自然科学基金青年科学基金项目(12102305)“考虑微观结构的锂电池电极颗粒的力化耦合断裂模型及机理研究”,主持2020.7.-2023.6.,上海市科学技术委员会“扬帆计划”(20YF1452300)“全固态锂电池失效的力学与电化学耦合建模及数值分析”,主持 期刊发表 [30]. Jiayu Tian, Jiayue Yang, Ying Zhao*, "Metamaterial with Synergistically Controllable Poisson’s Ratio and Thermal Expansion Coefficient," International Journal of Mechanical Sciences, vol. 256, p. 108488, Oct. 2023. doi: 10.1016/j.ijmecsci.2023.108488[29]. 胡必胜,赵莹*,“锂离子电池多尺度断裂的研究进展”,应用力学学报,April 2023,40(2): 320-333。[28]. J. A. Lewis, S. E. Sandoval, Y. Liu, D. L. Nelson, S. G. Yoon, R. Wang, Y. Zhao, M. Tian, P. Shevchenko, E. Martínez-Pañeda, and M. T. McDowell*, “Accelerated Short Circuiting in Anode-Free Solid-State Batteries Driven by Local Lithium Depletion,” Advanced Energy Materials, p. 2204186, Feb. 2023. doi: 10.1002/aenm.202204186[27]. Z. Chen, and Y. Zhao*, “ A quasi-physical method for random packing of spherical particle,” Powder Technology, vol. 412, p. 118002, Nov. 2022. doi: 10.1016/j.powtec.2022.118002[26]. 赵莹*,杨佳悦,田嘉宇,“全固态锂电池界面的机械失效模型综述”,力学季刊,Sept. 2022, 43(3): 471-481。doi: 10.15959/j.cnki.0254-0053.2022.03.001[25]. Y. Zhao*, Runzi Wang, Emilio Martinez-Paneda*, "A phase field electro-chemo-mechanical formulation for predicting void evolution at the Li-electrolyte interface in all-solid-state batteries," Journal of the Mechanics and Physics of Solids, vol. 167, p. 104999, Oct. 2022. doi: 10.1016/j.jmps.2022.104999 [preprint][24]. W. Tang, Z. Chen, and Y. Zhao*, “Assessment of optimization strategies for battery electrode active particles based on chemo-mechanical analysis,” Journal of Electrochemical Energy Conversion and Storage, vol. 19, no. 4, p. 041001, Nov 2022. doi: 10.1115/1.4054460 [IN: 2022 Emerging Investigators in Electrochemical Energy Conversion and Storage. LINK][23]. J. Tian, Z. Chen, and Y. Zhao*, “Review on Modeling for Chemo-mechanical Behavior at Interfaces of All-Solid-State Lithium-Ion Batteries and Beyond,” ACS Omega, vol. 7, no. 8, pp. 6455–6462, Feb. 2022. doi:10.1021/acsomega.1c06793[22]. Y. Zhao, V. S. Deshpande, N. Fleck*, "A compliant and low-expansion 2-phase micro-architectured material, with potential application to solid-state Li-ion batteries," Journal of the Mechanics and Physics of Solids, vol. 158, p. 104683, Jan. 2022. doi:10.1016/j.jmps.2021.104683 [下载][21]. B. H. Kim, K. Li, J.-T. Kim, Y. Park, H. Jang, X. Wang, Z. Xie, S. M. Won, H.-J. Yoon, G. Lee, W. J. Jang, K. H. Lee, T. S. Chung, Y. H. Jung, S. Y. Heo, Y. Lee, J. Kim, T. Cai, Y. Kim, P. Prasopsukh, Y. Yu, X. Yu, R. Avila, H. Luan, H. Song, F. Zhu, Y. Zhao, L. Chen, S. H. Han, J. Kim, S. J. Oh, H. Lee, C. H. Lee, Y. Huang*, L. P. Chamorro*, Y. Zhang*, and J. A. Rogers*, “Three-dimensional electronic microfliers inspired by wind- dispersed seeds,” Nature, vol. 597, no. 7877, pp. 503–510, Sep. 2021. doi:10.1038/s41586-021-03847-y[20]. C. Shi, Y. Zhao, P. Zhu, J. Xiao*, and G. Nie*, “Highly Stretchable and Rehealable Wearable Strain Sensor Based on Dynamic Covalent Thermoset and Liquid Metal,” Smart Materials and Structures, vol. 30, no. 10, p. 105001, Aug. 2021. doi:10.1088/1361-665X/ac1b3a (共同一作)[19]. Hyeon Jeong Lee, Zachary Brown, Ying Zhao, Jack Fawdon, Weixin Song, Ji Hoon Lee, Johannes Ihli, and Mauro Pasta*, “Ordered LiNi0.5Mn1.5O4 Cathode in Bis(fluorosulfonyl)imide-Based Ionic Liquid Electrolyte: Importance of the Cathode–Electrolyte Interphase,” Chemistry of Materials, vol. 33, no. 4, pp. 1238-1248, Feb. 2021. doi:10.1021/acs.chemmater.0c04014[18]. I. Capone, J. Aspinall, E. Darnbrough, Y. Zhao, T.-U. Wi, H.-W. Lee, and M. Pasta*, “Electrochemo-mechanical properties of red phosphorus anodes in lithium, sodium, and potassium ion batteries,” Matter, vol. 3, no. 6, pp. 2012–2028, Dec. 2020. doi:10.1016/j.matt.2020.09.017[17]. J. Xiang, Z. Cheng, Y. Zhao, B. Zhang, L. Yuan*, Y. Shen, Z. Guo, Y. Zhang, J. Jiang, and Y. Huang*, “A Lithium-Ion Pump Based on Piezo- electric Effect for Improved Rechargeability of Lithium Metal Anode,” Advanced Science, vol. 6, no. 22, p. 1901120, 2019. doi:10.1002/advs.201901120[16]. Y. Zhao*, P. Stein, Y. Bai, M. Al-Siraj, Y. Yang, and B.-X. Xu*, “A review on modeling of electro- chemo-mechanics in lithium-ion batteries,” Journal of Power Sources, vol. 413, pp. 259–283, Feb. 2019. doi:10.1016/j.jpowsour.2018.12.011[15]. Y. Zhao*, P. Stein, and B.-X. Xu, “Isogeometric analysis of mechanically coupled Cahn–Hilliard phase segregation in hyperelastic electrodes of Li-ion batteries,” Computer Methods in Applied Mechanics and Engineering, vol. 297, pp. 325–347, 2015. doi:10.1016/j.cma.2015.09.008[14]. Y. Zhao*, B.-X. Xu, P. Stein, and D. Gross, “Phase-field study of electrochemical reactions at exterior and interior interfaces in Li-ion battery electrode particles,” Computer Methods in Applied Mechanics and Engineering, vol. 312, pp. 428–446, Dec. 2016. doi:10.1016/j.cma.2016.04.033[13]. Y. Zhao*, D. Schillinger, and B.-X. Xu, “Variational boundary conditions based on the Nitsche method for fitted and unfitted isogeometric discretizations of the mechanically coupled Cahn–Hilliard equation,” Journal of Computational Physics, vol. 340, pp. 177–199, July 2017. doi:10.1016/j.jcp.2017.03.040[12]. Y. Zhao, L. R. De Jesus, P. Stein, G. A. Horrocks, S. Banerjee*, B.-X. Xu*, “Modeling of phase separation across interconnected electrode particles in lithium-ion batteries,” RSC Advances, vol. 7, pp. 41254–41264, Aug. 2017. doi: 10.1039/C7RA07352F[11]. L. R. De Jesus, Y. Zhao, G. A. Horrocks, J. L. Andrews, P. Stein, B.-X. Xu*, S. Banerjee*, “Lithiation across Interconnected Particle Networks”, Journal of Materials Chemistry A, vol. 5, pp. 20141-20152, Aug. 2017. doi: 10.1039/C7TA04892K(共同一作)[10]. Y. Bai, Y. Zhao, W. Liu, and B.-X. Xu*, “Two-level modeling of lithium-ion batteries,” Journal of Power Sources, vol. 422, pp. 92–103, May 2019. doi:10.1016/j.jpowsour.2019.03.026 [9]. P. Stein*, Y. Zhao, and B.-X. Xu, “Effects of surface tension and electrochemical reactions in Li-ion battery electrode nanoparticles,” Journal of Power Sources, vol. 332, pp. 154–169, Nov. 2016. doi:10.1016/j.jpowsour.2016.09.085[8]. B.-X. Xu*, Y. Zhao, and P. Stein, “Phase field modeling of electrochemically induced fracture in Li-ion battery with large deformation and phase segregation,” GAMM-Mitteilungen, vol. 39, no. 1, pp. 92– 109, 2016. doi:10.1002/gamm.201610006[7]. D. Eder-Goy*, Y. Zhao, and B.-X. Xu, “Dynamic pull-in instability of a prestretched viscous dielectric elastomer under electric loading,” Acta Mechanica, pp. 1–15, Aug. 2017. doi: 10.1007/s00707-017-1930-4[6]. Jingwei Xiang, Ying Zhao, Lixia Yuan*, Chaoji Chen, Yue Shen, Fei Hu, Zhangxiang Hao, Jing Liu, Baixiang Xu, Yunhui Huang*, “A Strategy of Selective and Dendrite-Free Lithium Deposition for Lithium Batteries”, Nano Energy, 2017. doi: 10.1016/j.nanoen.2017.10.065[5]. Z. Gao, Y. Zhao, H. Wang, Y. Wang, L. Jiang, Y. Xu, B. Xu, L. Zheng, C. Jin, P. Liu*, H. Yang, H. Zhao, X. Yang, and Y. Huang*, “Rapid-Heating-Triggered in Situ Solid-State Transformation of Amorphous TiO2 Nanotubes into Well-Defined Anatase Nanocrystals,” Crystal Growth & Design, vol. 19, pp. 1086– 1094, Feb. 2019. doi:10.1021/acs.cgd.8b01604[4]. Z. Gao, Z. Hao, M. Yi, Y. Huang, Y. Xu, Y. Zhao, Z. Li, S. Zhu, B. Xu, P. Liu, F. R. Wang, Y. Huang, H. Zhao, and X. Yang, “Correlation between Mechanical Strength of Amorphous TiO2 Nanotubes and Their Solid State Crystallization Pathways,” ChemistrySelect, vol. 3, no. 38, pp. 10711–10716, 2018. doi:10.1002/slct.201802588[3]. D. Schillinger*, I. Harari, M.-C. Hsu, D. Kamensky, S.K.F. Stoter, Y. Yu, and Y. Zhao, “The non- symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements,” Computer Methods in Applied Mechanics and Engineering, vol. 309, pp. 625–652, Sept. 2016. doi:10.1016/j.cma.2016.06.026[2]. Y. Zhao*, P. Stein and B. Xu, “Phase field simulation of the intercalation-induced stresses in the hyperelastic solids via isogeometric analysis,” Proceedings in Applied Mathematics and Mechanics, vol. 15, no. 1, pp.443–444, 2015. doi:10.1002/pamm.201510212[1]. P. Stein*, Y. Zhao, and B. Xu, “An analytical solution for the mechanically coupled diffusion problem in thin-film electrodes,” Proceedings in Applied Mathematics and Mechanics, vol. 13, no. 1, pp. 237–238, 2013. doi:10.1002/pamm.201310114 学生信息 当前位置:教师主页 > 学生信息 入学日期 所学专业 学号 学位 招生信息 当前位置:教师主页 > 招生信息 招生学院 招生专业 研究方向 招生人数 推免人数 考试方式 招生类别 招生年份
注册教师主页会员,申请查看完整信息,请准确输入邮箱地址用于接收信息,网址处请填写本页面的网页地址。
本页面网址为:https://www.jiaoshizhuye.com/a/shanghai/tjdx/107209/