姓名 | 王俊 | 性别 | 发明专利4999代写全部资料 |
学校 | 苏州大学 | 部门 | 轨道交通学院 |
学位 | 发明专利包写包过 特惠申请 | 学历 | 版权登记666包过 代写全部资料 |
职称 | 软件著作权666包写包过 | 联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 | 人气 | |
软件产品登记测试 | 软件著作权666元代写全部资料 | 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
个人简介 王俊,苏州大学轨道交通学院教授,博士生导师。苏州大学“优秀青年学者”,江苏省“高层次创新创业人才引进计划”“双创博士”,江苏省科协青年科技人才托举工程资助培养对象,年度科学影响力排行榜全球前2%学者(斯坦福大学与Elsevier联合发布)。主持国家级项目2项、省部级项目4项、市厅级项目2项。已累计发表学术论文80余篇,入选ESI高被引论文4篇、热点论文1篇,获授权中国发明专利近30件,美国国家发明专利4件,中国实用新型专利8件,软件著作权9件。是中国振动工程学会故障诊断专业委员会、转子动力学专业委员会和动态信号分析专业委员会理事。主要研究方向为载运工具关键部件安全监控与故障诊断。教育经历:博士, 2010.09-2015.06, 精密仪器及机械, 中国科学技术大学, 工学博士学位本科, 2006.09-2010.06, 测控技术与仪器, 武汉理工大学, 工学学士学位本科, 2006.09-2010.06, 工商管理, 武汉理工大学, 管理学学士学位工作经历:2023.07-今, 苏州大学轨道交通学院, 教授2017.07-2023.06, 苏州大学轨道交通学院, 副教授2015.07-2017.06, 美国内布拉斯加大学林肯分校, 高级研究助理代表性论文:[1]Jun Wang, He Ren, Changqing Shen, Weiguo Huang, Zhongkui Zhu*,Multi-scale style generative and adversarial contrastive networks for single domain generalization fault diagnosis, Reliability Engineering & System Safety, Mar. 2024, 243: 109879. DOI: 10.1016/j.ress.2023.109879.[2]He Ren, Jun Wang*, Weiguo Huang, Xingxing Jiang, Zhongkui Zhu, Domain-invariant feature fusion networks for semi-supervised generalization fault diagnosis, Engineering Applications of Artificial Intelligence, Nov. 2023, 126, Part D: 107117. DOI: 10.1016/j.engappai.2023.107117. [3]He Ren, Jun Wang*, Changqing Shen, Weiguo Huang, Zhongkui Zhu, Dual classifier-discriminator adversarial networks for open set fault diagnosis of train bearings, IEEE Sensors Journal, 2023, 23(18): 22040-22050. DOI: 10.1109/JSEN.2023.3301593.[4]Jun Dai, Jun Wang*,Linquan Yao, Weiguo Huang, Zhongkui Zhu, Categorical feature GAN for imbalanced intelligent fault diagnosis of rotating machinery, IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3525212. DOI:10.1109/TIM.2023.3298425.[5]He Ren, Jun Wang*, Zhongkui Zhu, Juanjuan Shi, Weiguo Huang, Domain fuzzy generalization networks for semi-supervised intelligent fault diagnosis under unseen working conditions, Mechanical Systems and Signal Processing, 2023, 200: 110579. DOI: 10.1016/j.ymssp.2023.110579.[6]Linghui Lu, Jun Wang*, Weiguo Huang, Changqing Shen, Juanjuan Shi, Zhongkui Zhu, Dual contrastive learning for semi-supervised fault diagnosis under extremely low label rate, IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3520512. DOI: 10.1109/TIM.2023.3284954. [7]王俊, 王玉琦, 轩建平, 刘金朝, 黄伟国*, 朱忠奎. 车辆传动系统变参小波流形融合故障诊断方法. 交通运输工程学报, 2023, 23(1): 170–183. DOI: 10.19818/j.cnki.1671-1637.2023.01.013.[8]He Ren, Jun Wang*, Jun Dai, Zhongkui Zhu, Jinzhao Liu, Dynamic balanced domain adversarial networks for cross domain fault diagnosis of train bearings, IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3514612. DOI: 10.1109/TIM.2022.3179468. [9]Guifu Du, Tao Jiang, Jun Wang*, Xingxing Jiang, Zhongkui Zhu, Improved multi-bandwidth mode manifold for enhanced bearing fault diagnosis, Chinese Journal of Mechanical Engineering, 2022, 35(1): 14. DOI: 10.1186/s10033-022-00677-5.[10]Xingxing Jiang, Jun Wang*, Changqing Shen, Juanjuan Shi, Weiguo Huang, Zhongkui Zhu, Qian Wang, An adaptive and efficient VMD and its application for bearing fault diagnosis, Structural Health Monitoring, Sep. 2021, 20(5): 2708-2725. DOI: 10.1177/1475921720970856. [11]Jun Wang, Guifu Du, Zhongkui Zhu, Changqing Shen, Qingbo He*, Fault diagnosis of rotating machines based on the EMD manifold, Mechanical Systems and Signal Processing, 2020, 135: 106443. DOI: 10.1016/j.ymssp.2019.106443. [12]Jun Dai, Jun Wang*, Weiguo Huang, Juanjuan Shi, Zhongkui Zhu, Machinery health monitoring based on unsupervised feature learning via generative adversarial networks, IEEE/ASME Transactions on Mechatronics, Oct. 2020, 25(5): 2252–2263. DOI: 10.1109/TMECH.2020.3012179. [13]Guifu Du, Jun Wang*, Xingxing Jiang, Dongliang Zhang, Longyue Yang, Yihua Hu, Evaluation of rail potential and stray current with dynamic traction networks in multitrain subway systems, IEEE Transactions on Transportation Electrification, Jun. 2020, 6(2): 784–796. DOI: 10.1109/TTE.2020.2980745. [14]Guifu Du, Jun Wang*, Zhongkui Zhu, Yihua Hu, Dongliang Zhang, Effect of crossing power restraint on reflux safety parameters in multitrain subway systems, IEEE Transactions on Transportation Electrification, 2019, 5(2): 490–501. DOI: 10.1109/TTE.2019.2899207.[15]Jun Wang, Wei Qiao*, Liyan Qu, Wind turbine bearing fault diagnosis based on sparse representation of condition monitoring signals, IEEE Transactions on Industry Applications, 2019, 55(2): 1844–1852. DOI: 10.1109/TIA.2018.2873576. [16]戴俊, 王俊*, 朱忠奎, 沈长青, 黄伟国. 基于生成对抗网络和自动编码器的机械系统异常检测. 仪器仪表学报, 2019, 40(9): 16–26. DOI: 10.19650/j.cnki.cjsi.J1905083.[17]Jun Wang, Fangzhou Cheng, Wei Qiao*, Liyan Qu, Multiscale filtering reconstruction for wind turbine gearbox fault diagnosis under varying-speed and noisy conditions, IEEE Transactions on Industrial Electronics, 2018, 65(5): 4268–4278.DOI: 10.1109/TIE.2017.2767520.[18]Jun Wang, Yayu Peng, Wei Qiao*, Jerry L. Hudgins, Bearing fault diagnosis of direct-drive wind turbines using multiscale filtering spectrum, IEEE Transactions on Industry Applications, 2017, 53(3): 3029–3038. DOI: 10.1109/TIA.2017.2650142. [19]Jun Wang, Qingbo He*, Wavelet packet envelope manifold for fault diagnosis of rolling element bearings, IEEE Transactions on Instrumentation and Measurement, 2016, 65(11): 2515–2526. DOI: 10.1109/TIM.2016.2566838.[20]Jun Wang, Yayu Peng, Wei Qiao*, Current-aided order tracking of vibration signals for bearing fault diagnosis of direct-drive wind turbines, IEEE Transactions on Industrial Electronics, 2016, 63(10): 6336–6346. DOI: 10.1109/TIE.2016.2571258.[21]Jun Wang, Qingbo He*, Fanrang Kong, Multiscale envelope manifold for enhanced fault diagnosis of rotating machines, Mechanical Systems and Signal Processing, 2015, 52-53: 376–392. DOI: 10.1016/j.ymssp.2014.07.021.[22]Jun Wang, Qingbo He*, Fanrang Kong, Adaptive multiscale noise tuning stochastic resonance for health diagnosis of rolling element bearings, IEEE Transactions on Instrumentation and Measurement, 2015, 64(2): 564–577. DOI: 10.1109/TIM.2014.2347217.[23]Jun Wang, Qingbo He*, Fanrang Kong, An improved multiscale noise tuning of stochastic resonance for identifying multiple transient faults in rolling element bearings, Journal of Sound and Vibration, 2014, 333(26): 7401–7421. DOI: 10.1016/j.jsv.2014.08.041.[24]Jun Wang, Qingbo He*, Exchanged ridge demodulation of time-scale manifold for enhanced fault diagnosis of rotating machinery, Journal of Sound and Vibration, 2014, 333(11): 2450–2464. DOI: 10.1016/j.jsv.2014.01.006.[25]Jun Wang, Qingbo He*, Fanrang Kong, A new synthetic detection technique for trackside acoustic identification of railroad roller bearing defects, Applied Acoustics, 2014, 85: 69–81. DOI: 10.1016/j.apacoust.2014.04.005.[26]Jun Wang, Qingbo He*, Fanrang Kong, Automatic fault diagnosis of rotating machines by time-scale manifold ridge analysis, Mechanical Systems and Signal Processing, 2013, 40(1): 237–256. DOI: 10.1016/j.ymssp.2013.03.007.[27]Qingbo He*, Jun Wang, Fei Hu, Fanrang Kong, Wayside acoustic diagnosis of defective train bearings based on signal resampling and information enhancement, Journal of Sound and Vibration, 2013, 332(21): 5635–5649. DOI: 10.1016/j.jsv.2013.05.026.[28]Qingbo He*, Jun Wang, Effects of multiscale noise tuning on stochastic resonance for weak signal detection, Digital Signal Processing, 2012, 22(4): 614–621. DOI: 10.1016/j.dsp.2012.02.008.[29]Qingbo He*, Jun Wang, Yongbin Liu, Daoyi Dai, Fanrang Kong, Multiscale noise tuning of stochastic resonance for enhanced fault diagnosis in rotating machines, Mechanical Systems and Signal Processing, 2012, 28: 443–457. DOI: 10.1016/j.ymssp.2011.11.021.
注册教师主页会员,申请查看完整信息,请准确输入邮箱地址用于接收信息,网址处请填写本页面的网页地址。
本页面网址为:https://www.jiaoshizhuye.com/a/jiangsu/szdx/23604/