全网教师主页

刘英想教师主页

姓名 刘英想 性别 刘英想
学校 哈尔滨工业大学 部门 机电工程学院
学位 刘英想 学历 刘英想
职称 软件著作权666包写包过 联系方式 【发送到邮箱】
邮箱 【发送到邮箱】 人气
软件产品登记测试 | 软件著作权666元代写全部资料 | 实用新型专利1875代写全部资料
集群智慧云企服 / 知识产权申请大平台
微信客服在线:543646
急速申请 包写包过 办事快、准、稳
刘英想教师简介

Lab overview Research 刘英想 About Liu Publications Members Patents News Teaching ...en Members en Patents en News en Teaching 新建主栏目 Lab overview 名称 Our lab (Lab of Advanced Actuation Technologies) has diverse research interests, but primarily with focuses on applications of piezoelectric materials and bionic robots. Much of our work has been in the fields of piezoelectric motors, ultrasonic motors, piezoelectric transducers, micro-nano manipulations, precision actuating, nano-positioning, vibration controls and piezoelectric jets. In addition, we are interested in micro-nano manipulation robots, fish robots, soft robots, micro robots and jumping robots. We have developed a lot of devices, both piezoelectric devices and robot prototypes. Our lab members have contributed a lot to the research topics we are currently exploring. 招生信息 名称 博士招生:每年4-5人; 硕士招生:每年8-10人; 主要研究方向: 1. 压电驱动:压电机器人、微纳操控机器人、压电机械手、压电驱动器、超声电机、超声换能器、压电运动平台、压电摆镜、压电微纳操控器、压电超声振动辅助加工、超声焊接、压电流体操控;2. 仿生机器人:小型机器人、软体机器人、移动机器人、两栖机器人、仿鱼机器人、游动机器人、可重构机器人、柔性手爪、人工肌肉。 联系方式,电子邮箱: liuyingxiang868@hit.edu.cn Lab News 新闻标题 祝贺李京、张仕静、荀铭鑫、王玮亦和李建行获得第三届中国研究生机器人创新设计大赛特等奖 发布时间 2021-08-26 光谷杯”第三届中国研究生机器人创新设计大赛在线上举行,来自清华大学、哈尔滨工业大学、浙江大学、华中科技大学、西安交通大学等73所高校和研究所的172支队伍展开了激烈角逐。经过作品视频展示评审、线上分组答辩评审、特等奖争夺赛等环节,由李京、张仕静、荀铭鑫、王玮亦和李建行组队参赛的作品“微小型多模式压电机器人”获得特等奖。 http://news.hit.edu.cn/2021/0905/c1510a221902/page.htm https://cpipc.acge.org.cn//cw/detail/2c9088a5696cbf370169a3f8934810be/2c90800c7b7c347f017b81650f7a1b68 新闻标题 研究室在压电爬杆机器人研究方面取得新进展 发布时间 2021-08-23 研究室在机器人领域顶级期刊《IEEE机器人会刊》(IEEE Transactions on Robotics)发表了题为《Crabbot:一种采用压电驱动的爬杆机器人》(Crabbot: A Pole-Climbing Robot Driven by Piezoelectric Stack)的学术论文,该成果为爬杆机器人难以兼顾高分辨力、大负载/自重比、紧凑结构和不同截面形状爬行杆的适应能力等特性提供了一种有效的解决方案。马雪峰博士为论文第一作者,刘英想教授为论文通讯作者,我校为论文唯一完成单位与通讯单位;该项研究工作得到了国家自然科学基金项目(项目编号:U1913215和51975162)的资助。 该成果详细报道:http://robot.hit.edu.cn/2021/0831/c277a259249/page.htm 全文链接:https://ieeexplore.ieee.org/document/9520422 新闻标题 祝贺周栋、唐心田、孙晋三位博士获得2021年“世界机器人大赛─共融机器人挑战赛”一等奖 发布时间 2021-08-23 8月20日,由国家自然科学基金委员会主办的2021年“世界机器人大赛—共融机器人挑战赛”第一阶段比赛通过线上会议形式举行,来自全国的26支参赛队参加了比赛。 哈尔滨工业大学HIT先进驱动代表队获得一等奖,参赛队成员:周栋、唐心田、孙晋,获奖项目名称:高性能自传感纤维卷绕型柔性人工肌肉的研究及其应用。 http://trico-robot.hust.edu.cn/info/1097/1952.htm 新闻标题 一种用于光学辅助微操作的低容性两轴压电偏转镜 发布时间 2021-01-08 近年来,随着精密光学工程领域的快速发展,非相干光束组合、激光扫描与成像、光学图像稳定与运动补偿、精密指向与跟踪等技术逐渐成为研究热点,并引起了国内外研究人员的广泛关注。光学镜片的姿态调整与形态控制已成为该领域的两个关键研究任务,它们所涉及的设备从功能上可分为快速偏转镜与主动变形镜两大类。其中,压电偏转镜则主要采用压电陶瓷叠堆驱动器作为驱动元件,该方案与基于电磁效应的偏转镜相比具有易于实现高动态、高分辨力、快速响应、结构简单、无电磁干扰等优势;但是,压电陶瓷叠堆驱动器固有的高静态电容、显著非线性在一定程度上增加了这类偏转镜的驱动和控制难度;此外,压电陶瓷叠堆驱动器有限的行程往往需要借助柔性机构实现位移放大,对于多轴偏转镜而言,这将使得其系统复杂性和成本明显增加,不利于性能扩展和系列化生产。 研究室分析了光学辅助微操作对两轴偏转镜的应用需求,基于压电双晶梁结构,提出了一种贴片式十字梁构型的两轴压电偏转镜,制作了试验样机并搭建了实验测试系统,测试了偏转镜在开环状态下的运动耦合特性、迟滞特性、分辨力特性和幅值-频率特性,以及闭环状态下的点位控制特性和运动跟踪特性。测试结果表明:偏转镜绕X轴和Y轴的运动耦合比例分别为3.03%和3.63%,最大工作电压下的迟滞比例分别小于7%和6%,偏转运动分辨力分别为1.83μrad和1.73μrad;在使用平均输出功率为6W功放的情况下,闭环定位运动的响应时间小于5.9ms,X轴和Y轴的定位运动误差分别在±7.35μrad和±8.81μrad之内;该偏转镜最大静态电容为13.61nF每轴。此外,初步展示了该偏转镜在光学辅助显微操作中光斑运动控制的潜在应用。与现有多轴偏转镜相比,所研制的两轴压电偏转镜具有高分辨力、快速响应、低迟滞、低成本、易于驱动控制、易于系列化生产等优势,有望在精密光学操控系统中得以应用。 文章信息:Shijing Zhang, Yingxiang Liu*, Jie Deng, Kai Li, Qingbing Chang, Development of a low capacitance two-axis piezoelectric tilting mirror used for optical assisted micromanipulation, Mechanical Systems and Signal Processing, 2021, 154: 107602 新闻标题 一种基于弯曲换能器的高压差压电主动比例调节阀 发布时间 2020-12-21 近年来,随着微流体系统的迅猛发展,为生物医学、液体冷却、燃料供给、化学分析以及航空航天等高精尖领域的发展提供了新的机遇。其中,压电主动调节阀作为微流体系统的关键组成部件,因其具有结构简单、功耗小、响应快、无电磁干扰且不受电磁干扰、控制方便、低迟滞和无污染等优点,在精密微流体控制方面具有广阔的应用前景。目前,压电主动调节阀包括压电薄膜驱动型主动调节阀和压电叠堆驱动型主动调节阀,其中,压电薄膜驱动型主动调节阀具有结构简单、成本低、加工装配方便等优点,然而该类型阀的振子驱动力较小,致使阀的流量调节范围及压差调节能力受限,一般只适用于低压差的工作场景;压电叠堆驱动型主动调节阀虽然能够实现较大的振子驱动力,但是受限于振子的小行程,致使流量调节能力有限,且加工装配困难;虽然有研究采用压电叠堆和柔性铰链相结合的方式,以增大压电振子的输出行程,虽然有效提升了阀的流量调节能力,但导致的直接问题是阀的结构复杂、体积大和响应速度慢。综上所述,如何实现压电主动调节阀小型化、高压力、大流量、高响应速度的兼顾已成为当前精密微流体控制领域的瓶颈之一。 研究室设计了一种基于夹心式弯曲换能器的高压差压电主动比例调节阀,在弯曲换能器的驱动下,借助于阀膜结构可实现压电主动控制阀的快速开启和关闭,有效实现了高压流体的比例控制。通过静力学分析确定了阀的结构参数并推导了阀的瞬态过流间隙;在此基础上,基于周向流理论和扩展的伯努利方程建立了阀的流量模型,阐明了阀的输入压差和电压对其输出流量的影响机制。研制了压电主动调节阀实物样机并搭建了实验测试系统,阀的总体尺寸为92mm×40mm×29mm。实验测试结果表明:当驱动电压为300Vp-p时,在弯曲换能器的驱动下阀膜的开启高度为15.76μm;在无负载条件下,阀开启和关闭的响应时间分别为330μs和340μs;在输入压差为344.75kPa时,阀的最大输出流量为286.3mL/min;此外,阀在常闭状态和预压力关闭状态下的对应的泄漏量分别为4.03mL/min和0.31mL/min,且最大截止压力为275.8kPa。该压电主动比例调节阀兼顾了小型化、高压力、大流量及高响应速度综合优势,在生物医学、液体冷却、燃料供给、化学分析以及航空航天等领域具有广阔的应用前景。 文章信息:Hengyu Li, Junkao Liu, Kai Li, Jie Deng, Yingxiang Liu*, Development of a high differential pressure piezoelectric active proportional regulation valve using a bending transducer, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.3044814. 新闻标题 压电泵及其应用的最新研究进展综述 发布时间 2020-11-13 作为精密流体驱动技术中最典型的一种新型流体泵,压电泵是将压电驱动技术和流体泵送技术相结合的产物,利用压电元件的逆压电效应将电能转换为机械能,再由特殊设计的结构驱动流体定向运动,从而将泵的机械能转换为流体的动能或势能输出。压电泵具有结构紧凑、易微小型化、功耗低、控制精度高、响应速度快、噪声小及无电磁干扰等诸多优点,已逐渐成为对传统流体泵的有力补充和替代。然而,近年来缺少关于压电泵及其应用的综述报道,从构型设计、工作模式、优化方法以及应用四个方面对压电泵的最新研究进展进行全面系统地概述显得尤为重要。 研究室在中科院TOP期刊《机械系统与信号处理》(Mechanical Systems and Signal Processing)上发表了题为《压电泵及其应用的最新研究进展综述》(A review of recent studies on piezoelectric pumps and their applications)的长篇综述论文,相关内容可为从事压电泵研究的业内人员提供改进压电泵输出性能的基础性指导,也为业外人员为特定应用场合确定最佳压电泵提供了选择依据。 文章信息:Hengyu Li, Junkao Liu, Kai Li*, Yingxiang Liu*, A review of recent studies on piezoelectric pumps and their applications, Mechanical Systems and Signal Processing, 2021, 151: 107393. 新闻标题 一种基于仿生四足压电驱动器的大行程纳米定位平台 发布时间 2020-10-15 实现微/纳米级精度的定位与跟踪任务是微纳科学领域的关键问题,在微/纳米制造、光学扫描成像以及生物医学等领域至关重要,微/纳平台是相关领域的基础器件。随着这些领域的快速发展,对微/纳平台的各项技术指标均提出了苛刻的要求,共性的有:结构紧凑、纳米级定位精度、大行程范围及多自由度输出等。比如,在光学扫描领域,样品需要高定位精度和大工作空间,这要求载物台应同时具备高定位精度和大工作范围。压电驱动技术具有不受电磁辐射干扰、响应快、输出推力大、易于实现纳米级分辨率等优点,已成为精密驱动技术领域的一项核心技术。然而,现有的压电平台无法同时兼顾纳米级定位精度、大行程范围及多自由度输出的能力,研究具有跨尺度输出能力的多自由度压电精密运动平台已成为当前的核心挑战之一,属于高端装备领域的卡脖子问题。 研究人员设计了一种基于仿生四足压电驱动器的大行程纳米定位平台,基于仿生学思想,提出了驱动器的仿生行走和摆动致动模式。平台在仿生摆动致动模式下可以实现μm工作范围内的nm级分辨力,在仿生行走致动模式下可以实现大工作范围内亚μm级分辨力;通过两种致动模式的灵活切换,可实现大工作范围内nm级分辨力的运动输出。利用Timoshenko梁理论、摩擦理论和二维接触理论建立了系统的动力学模型,并以其为基础设计了平台在行走致动模式和直接致动模式下的分立PI控制器,进而建立了面向驱动器多致动模式的协调控制策略,设计了多致动模式之间的切换控制器,实现仿生行走和摆动致动模式的自动切换。实验测试结果表明:所研制平台实现了平面15mm×15mm运动范围内优于±20nm的定位精度,且具有无磨损和无回退等优势,在在微/纳米制造、光学扫描成像以及生物医学等领域均具备了应用潜力。 文章信息:Jie Deng, Yingxiang Liu*, Shijing Zhang, Jing Li, Development of a nano-positioning platform with large travel range based on bionic quadruped piezoelectric actuator, IEEE/ASME Transactions on Mechatronics, 2020, DOI: 10.1109/TMECH.2020.3031258 新闻标题 刘英想教授担任国际期刊Materials主题编辑(Topic Editor) 发布时间 2020-10-12 新闻标题 祝贺邓杰顺利通过博士学位论文答辩 发布时间 2020-09-21 新闻标题 两自由度惯性旋转压电电机 发布时间 2020-08 近年来,随着精密光学、生物微操作、微纳定位等领域的快速发展,多自由度精密驱动技术逐渐成为了研究热点,并引起了各国研究人员的广泛关注。压电驱动器凭借其响应速度快、高位移分辨力、结构紧凑、易于微型化等显著优势,已经成为精密驱动技术领域的一种优选方案。根据工作状态的差异,压电驱动器可分为共振式和非共振式两大类。国内外学者报道了多种共振式多自由度精密驱动器,虽然它们已实现了多自由度、高速、大输出力/力矩,然而其在运行中存在明显的发热和摩擦磨损问题,这导致其运行稳定性较差。 研究室提出了一种由四个压电双晶结构组成的新型二维压电驱动器,并基于该驱动器研制了一种两自由度惯性旋转压电电机。建立了二维压电驱动器准静态输出位移与激励电压之间的映射关系,实现了二维压电驱动器输出位移的理论预估。测试结果表明:该电机实现了球型动子的两自由度双向旋转运动;绕X轴和Y轴的最大转速分别达到了263.26mrad/s和268.48mrad/s,绕X轴和Y轴旋转运动的位移分辨力分别达到了6.27μrad和6.34μrad。研究结果充分表明:所研制的两自由度惯性旋转压电电机具有结构紧凑、运动范围广、高位移分辨率、低容性当量等特点,有望在精密姿态调整系统中得以应用。 论文信息:Shijing Zhang, Yingxiang Liu*, Jie Deng, Xinqi Tian, Xiang Gao, Development of a two-DOF inertial rotary motor using a piezoelectric actuator constructed on four bimorphs, Mechanical Systems and Signal Processing, 2021, 149: 107213. 新闻标题 基于“钳位-致动”原理的夹心式压电驱动器 发布时间 2020-06 近年来,非谐振型压电驱动器因其自身所具有的响应快、精度高、构型多样等优势受到了各国研究学者的广泛关注。当前已有非谐振型压电驱动器主要包括直推式、惯性式和尺蠖式三种类型,其中直推式压电驱动器能够实现纳米级精密驱动,但其运动行程受限;惯性式和尺蠖式压电驱动器都能够通过累积微小步距来实现大行程的运动输出,但惯性式压电驱动器由于自身工作原理所限存在不可避免的位移回退现象;而尺蠖式压电驱动器一般均采用柔性铰链设计相应的钳位和驱动机构,这使得驱动器存在整体结构复杂、刚度降低等问题。综上,研制能够兼顾结构紧凑、大行程、高精度和驱动过程无回退的非谐振型压电驱动器对促进压电驱动器领域的进一步发展将会产生深远的影响,相关研究工作具有重要的理论意义和实用需求。 研究室基于纵向运动和弯曲运动复合驱动的思想提出并研制了一种基于“钳位-致动”原理的夹心式压电驱动器,利用驱动器纵向运动钳位动子,利用弯曲运动驱动动子,通过累积动子多个微小步距进而实现大行程运动输出。所研制样机实验结果表明:动子在整个运动过程中没有回退运动产生,当激励电压幅值和频率分别为400Vp-p和60Hz时,动子获得了0.72mm/s的输出速度;在预压力为120N的实验条件下,该驱动器获得的最大输出力为14.7N;此外,该驱动器在闭环控制下获得了优于30nm的位置精度。研究结果充分表明:基于“钳位-致动”原理的夹心式压电驱动器具有结构紧凑、大行程、高精度和整个驱动过程无位移回退的优势。 论文信息:Liang Wang, Yingxiang Liu*, Qiangqiang Shen, Junkao Liu, Design and experimental verification of a bolt-clamped piezoelectric actuator based on clamping and driving mechanism, Mechanical Systems and Signal Processing, 2021, 146: 107065. 新闻标题 纵振换能器致动的共振压电微喷装置 发布时间 2020-06 压电微喷因具有结构简单、控制方便、响应速度快、高喷射精度及无电磁干扰等技术优势,在打印、细胞操作、生物芯片、陶瓷加工及组织工程等领域得到了广泛应用。根据工作模式的不同,当前压电微喷主要可以分为弯曲模式、挤压模式、推杆模式、剪切模式和撞针模式。其中,弯曲、挤压、推杆及剪切模式压电微喷由于工作原理和致动方式的限制,仅能实现低粘度流体喷射(<20 cps)。然而,随着精密分配技术及其应用的迅速发展,对高粘度流体的高效分配提出了迫切的需求。撞针模式压电微喷的提出虽然能够解决高粘度流体分配困难的问题,然而该类型装置的分配频率较低,且装置的结构较为复杂。由此可见,可实现高粘度流体的快速喷射的新型压电微喷技术的发展显得尤为迫切。 研究室提出一种基于纵振换能器的新型压电微喷装置,通过对纵振换能器施加高频正弦激励电信号,致使纵振换能器产生高频振动,进而驱动微喷腔体产生瞬态的体积变化,最终实现高粘度流体的快速喷射。实验结果表明:当驱动电压为300 Vp-p、频率为19.4 kHz时,设计的装置可实现粘度为150 cps的硅油喷射,输出流量为0.07 mL/s;相同激励条件下,当硅油粘度为2 cps时,装置的输出流量为0.51 mL/s。该装置能够显著拓宽喷射对象的粘度范围,实现了高粘度流体喷射,与现有的压电微喷装置相比具备了显著优势。 文章信息:Hengyu Li, Junkao Liu, Yingxiang Liu*, Kai Li, Yuming Feng, Development of a resonant piezoelectric micro-jet for high-viscosity liquid using a longitudinal transducer, Mechanical Systems and Signal Processing, 2021, 146: 107012. 新闻标题 微小型四足爬行机器人 发布时间 2020-04 微型移动机器人显著的优点是其体积小,可以应用于如工程检测、临床医学、空间监测和救灾等领域。微型机器人由于其广阔的应用前景,在近二十年来得到了越来越多的研究和发展。根据驱动原理的不同,微型机器人采用的驱动方式主要包含:气动驱动、磁场驱动、电磁电机驱动和智能材料驱动,其中电磁电机驱动最为常用。然而,采用电磁电机驱动的微小型机器人一般需设置减速器,并设计较为复杂的执行机构,这都会引起机器人整体系统的体积和重量的增加。该问题严重制约了其应用领域的进一步拓展,已成为当前该领域亟待解决的关键问题之一。 研究室提出了一种基于腿部共振驱动的四足爬行机器人,利用机器人腿部两个正交方向一阶弯曲振动的复合在驱动足处形成具有致动效应的椭圆轨迹,进而通过驱动足与接触面间的摩擦耦合实现了微型机器人的运动,通过控制四个驱动足的动作时序实现了直线运动、左右转向以及原地转向等不同运动模式的转换。该微小型机器人的突出优势在采用电磁电机直接激励机器人腿部产生谐振,省略了减速器和执行机构,实现结构的极大简化,有助于进一步实现机器人本体的微小型化和轻量化。该微小型四足机器人样机整体尺寸为72mm×76mm×35mm、最大运动速度为206mm/s、最大转弯半径为110cm、最大负载为110g。 Qi Su, Shuhang Zhang, Yingxiang Liu*, Jie Deng, A quadruped crawling robot operated by elliptical vibrations of cantilever legs, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2970641 https://ieeexplore.ieee.org/document/8984733 新闻标题 一种基于d15工作模式的扭转型压电驱动器 发布时间 2020-04 近年来,压电材料凭借其出色的机电耦合特性得到了广泛的关注,并已成功应用于换能器、传感器以及驱动器等诸多领域。尽管结构功能各异的压电器件种类繁多,但是作为其核心的基础性压电元件类型却屈指可数,主要包括压电陶瓷片、压电双晶、压电叠堆、压电陶瓷管以及压电薄膜,这些压电元件只能输出伸缩运动或弯曲运动,而机电系统中所广泛应用的扭转运动则必须由线性压电元件配合运动转换机构来实现,这不仅增加了体积和成本,还使得精度、刚度和带宽显著降低,严重限制了压电技术应用领域的进一步拓宽。因此,如何构建可直接输出旋转运动的基础性压电元件是一项极具挑战性的研究工作。 研究室基于压电材料的d15工作模式提出并研制了一种可以直接输出旋转运动的扭转型压电驱动器,并以理论模型为基础给出了详细的设计方法,使其可以满足多种应用需求;借助于多物理场耦合的有限元方法,分别从电、力的角度对该元件进行了较为全面的仿真分析,揭示了该元件的工作机理和响应规律;所研制样机的实验测试结果表明:该压电元件在拓扑形状(规则圆柱体)、尺寸结构(Φ42×10mm3)、重复性精度(0.04μrad)、线性度(99.98%)、分辨力(0.022μrad)、非线性迟滞(1.85%)、负载刚度(667N?mm/μrad)以及运动带宽(87.5kHz)等方面均具有显著的优势。 Hongpeng Yu, Yingxiang Liu*, Jie Deng, Shijing Zhang, A novel piezoelectric stack for rotary motion by d15 working mode: principle, modeling, simulation and experiments, IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 491–501 https://ieeexplore.ieee.org/document/8957271 新闻标题 博士生周栋、唐心田获得2019年软体机器人理论与设计大会“软体机器人创新设计”竞赛三等奖 发布时间 2019-11-19 新闻标题 研究室四人(王良、田鑫琦、高祥、张彬瑞)获2019年度研究生国家奖学金(公示中) 发布时间 2019-10-22 博士研究生:田鑫琦、王良 硕士研究生:高祥、张彬瑞 新闻链接:“哈尔滨工业大学2019年度研究生国家奖学金获奖名单公示”http://today.hit.edu.cn/article/2019/10/21/71356 新闻标题 研究室获得2019年度黑龙江省科学技术奖(自然科学类二等) 发布时间 2019-10-18 项目名称: 复合振动模态压电致动机理与激励方法研究 完成人员:刘英想、陈维山、刘军考、石胜君 http://www.hljkjt.gov.cn/GJX/Attachment.ashx?id=13109 新闻标题 祝贺研究室四位硕士生获得硕士学位(张仕静获校优秀硕士学位论文) 发布时间 2019-07-05 1.张仕静,球型两自由度精密压电驱动器及其运动控制技术研究 2.左伟东,人工肌肉驱动的仿生六足软体机器人设计与实验研究 3.栾正斐,柔性人工肌肉驱动可变形机构及其运动控制研究 4.李旺鑫,基于微量流体压电喷射的轴系主动供油技术研究 新闻标题 祝贺研究室9位本科生获得学士学位(张舒航获得哈尔滨工业大学优秀本科毕业设计奖) 发布时间 2019-06-20 1. 张舒航,谐振致动型多足爬行机器人设计与实验 2. 董艺超,ICRA挑战赛机器人机械结构与云台电控设计 3. 关云天,压电超声致动型直线平台设计与实验研究 4. 李宜卿,步进型纳米级压电直线平台设计与实验探究 5. 曲申威,采用人工肌肉的可变形机构的设计与实验 6. 唐洪福,采用弯曲压电换能器激励的微流体泵设计与分析 7. 姚剑锋,压电致动十字梁四足平面爬行机器人 8. 张子正,非谐振式压电微喷机构喷射性能分析及实验研究 9. 周振宁,面向轴承润滑的压电微泵设计及实验研究 基本信息 名称 刘英想,男,1982年出生于河北沧州,工学博士,哈尔滨工业大学机电工程学院/机器人技术与系统国家重点实验室教授、博士生导师。国家杰出青年科学基金获得者、全国优秀博士论文获得者、哈尔滨工业大学青年科学家工作室负责人、加州大学伯克利分校国家公派访问学者。主要研究方向为压电驱动理论与技术(压电驱动、压电机器人、压电换能器、超声振动利用、振动主动控制)、机器人理论与技术(柔性机器人、微型机器人、人工肌肉、机器鱼);出版专著2部,发表NC、IEEE TIE、IEEE TRO、IEEE TMECH、MSSP、AS、AIS、IJMS等国际权威期刊论文200余篇(IEEE汇刊论文60余篇),获授权发明专利120余项。主持国家自然科学基金等各类课题20余项。曾获黑龙江省自然科学二等奖、黑龙江省高校科学技术一等奖、黑龙江省技术发明二等奖、第二届上银优博铜奖、第四届中华优秀出版物图书提名奖、国际/国内论文奖6项。任国际期刊IEEE Transactions on Industrial Electronics、IEEE Transactions on Robotics、Journal of Field Robotics和IEEE Access编委(Associate Editor)、Materials编委(Topic Editor)、Applied Sciences和Actuators特邀编辑(Guest Editor)、《振动、测试与诊断》编委、《振动工程学报》青年编委、Engineering青年通讯专家,是中国机械工程学会高级会员、IEEE Senior Member、中国机械工程学会机器人分会第一届委员会委员、中国人工智能学会智能机器人专业委员会委员。 奖励与荣誉 名称 2024年 《Engineering》期刊2023年度优秀审稿人(Outstanding Reviewer Award) 2024年 爱思唯尔(Elsevier)2023“中国高被引学者” 2023年 哈尔滨工业大学优秀博士学位论文(指导教师,博士生:张仕静) 2023年 第13届上银优秀机械博士论文奖(指导教师,博士生:李恒禹) 2023年 首届工信部新材料创新大赛应用组二等奖 2023年 第五届中国研究生机器人创新设计大赛一等奖(指导教师) 2023年 第十八届中国研究生电子设计竞赛一等奖(指导教师) 2023年 入选Elsevier全球前2%顶尖科学家榜单(2022年度科学影响力排行榜) 2023年 第一届柔性外肢体技术挑战赛创新创意赛二等奖(指导教师) 2022年 哈尔滨工业大学优秀博士学位论文(指导教师,博士生:李恒禹) 2022年 国家杰出青年科学基金 2022年 入选Elsevier全球前2%顶尖科学家榜单(2021年度科学影响力排行榜) 2022年 第四届中国研究生机器人创新设计大赛特等奖(指导教师) 2022年 “明石杯”微纳传感技术与智能应用赛总决赛研究生组二等奖(指导教师) 2022年 “明石杯”微纳传感技术与智能应用赛总决赛本科生组二等奖(指导教师) 2022年 哈尔滨工业大学优秀博士学位论文(指导教师,博士生:邓杰) 2021年 入选Elsevier全球前2%顶尖科学家榜单(2020年度科学影响力排行榜) 2021年 第三届中国研究生机器人创新设计大赛特等奖(指导教师) 2021年 世界机器人大赛-共融机器人挑战赛一等奖(指导教师) 2020年 入选Elsevier全球前2%顶尖科学家榜单(2019年度科学影响力排行榜) 2019年 国际期刊Smart Materials and Structures杰出审稿人 2019年 黑龙江省科学技术奖(自然科学类二等) 2019年 黑龙江省“头雁”团队骨干成员 2019年 黑龙江省高校科学技术一等奖(自然科学奖) 2018年 国际期刊Smart Materials and Structures杰出审稿人 2018年 国际期刊Sensors & Actuators: A. Physical杰出审稿人 2018年 国际期刊Utrasonics杰出审稿人 2017年 哈尔滨工业大学“青年科学家工作室”负责人 2016年 AMEC2016国际会议论文展示奖 2016年 IWPMA&ECMD2016国际会议最佳论文展示奖 2016年 机器人技术与系统国家重点实验室2015年度论文优秀奖 2016年 国家自然科学基金优秀青年科学基金 2016年 国家开发银行科技创新奖奖教金 2016年 霍英东教育基金会第十五届高等院校青年教师基金 2015年 中国电子学会第二十一届青年学术年会优秀论文奖 2015年 机器人技术与系统国家重点实验室2014年度论文优秀奖 2013年 全国百篇优秀博士学位论文 2013年 哈尔滨工业大学青年拔尖人才 2012年 第四届中华优秀出版物图书提名奖 2012年 第十四届哈尔滨工业大学优秀博士论文 2012年 第二届上银优秀机械博士论文铜奖 2011年 黑龙江省技术发明二等奖 2011年 第十届振动理论及应用学术会议优秀论文奖 2009年 IMF-ISAF-2009国际会议(铁电领域国际顶级会议)最佳论文展示奖 2009年 中国造船工程学会优秀学术论文奖 工作经历 名称 2011~2013 哈尔滨工业大学 机电工程学院 讲师 2013~2014 University of California, Berkeley, Visiting Scholar 2013~至今 哈尔滨工业大学 机电工程学院 教授 2014~至今 哈尔滨工业大学 机电工程学院 博士生导师 2015~2020 哈尔滨工业大学 机电工程学院 机电控制及自动化系副主任(主管科研) 2017~至今 哈尔滨工业大学 青年科学家工作室 负责人 教育经历 名称 2001~2005 哈尔滨工业大学 机械设计制造及其自动化专业 学士 2005~2007 哈尔滨工业大学 机械电子工程专业 硕士 2007~2011 哈尔滨工业大学 机械电子工程专业 博士 学术兼职 名称 Associate Editor of IEEE Transactions on Industrial Electronics (2019-) Associate Editor of IEEE Transactions on Robotics (2022-) Associate Editor of Journal of Field Robotics (2022-) Associate Editor of IEEE Access (2017-) Editorial Board Member of Materials (2023-) Topic Editor of Materials (2020-2023) Engineering青年通讯专家 (2023-) 《振动、测试与诊断》编委 (2022-) 《振动工程学报》青年编委 (2020.11-2024.10) 中国机械工程学会高级会员 IEEE Senior Member 中国机械工程学会机器人分会第一届委员会委员 中国机械工程学会机器人分会第二届委员会委员 中国人工智能学会智能机器人专业委员会委员 中国机械工程学会流体传动与控制分会特种流控专业委员 中国电子学会第二十一届青年学术年会学术委员会主席 Guest Editor of Actuators (Special Issue "Actuating, Sensing, Control, and Instrumentation for Ultra Precision Engineering") (2022-2023) Guest Editor of Materials (Special Issue "Piezoelectric Materials and Piezoelectric Robots") (2022-2023) Guest Editor of Applied Sciences (Special Issue "Piezoelectric Actuators") (2017-2018) 2017年“软体机器人理论与技术”国际研讨会副主席 Brief Introduction 名称 Yingxiang Liu is a full professor of the School of Mechatronics Engineering at the Harbin Institute of Technology. He is also a member of the State Key Laboratory of Robotics and System at Harbin Institute of Technology. He was born in Suning County, Cangzhou, Hebei Province, PR China on June, 1982. He received the B.S. degree, M.S. degree and Ph.D. degrees from the School of Mechatronics Engineering at Harbin Institute of Technology, PR China, in 2005, 2007 and 2011, respectively. He joined the School of Mechatronics Engineering, Harbin Institute of Technology in 2011, where he has been a Professor since December 2013. He was a Visiting Scholar at the Mechanical Engineering Department, University of California, Berkeley, from August, 2013 to August, 2014. His research interests include piezoelectric actuators, piezoelectric robots, ultrasonic motors, ultrasonic transducers, micro-nano manipulations, piezoelectric micro jets, vibration control, fish robots, soft robots, micro robots and artificial muscles.He has published two monographs and over 260 papers, over 200 papers have been published on international journals (NC, IEEE TIE, IEEE TRO, IEEE TMECH, MSSP, AS, AIS, IJMS, etc). He has applied nearly 150 invention patents, over 120 patents have been granted. TIB, Science Park, Harbin Institute of Technology, Harbin Heilongjiang Province, China, 150001 The easiest way to reach me is by email: liuyingxiang868@hit.edu.cn Honors and Awards 名称 2019--Outstanding reviewer of Smart Materials and Structures 2019--Heilongjiang Province Science and Technology Invention Award-2nd Prize 2019--Colleges and Universities Science and Technology Invention Award of Heilongjiang Province-1st Prize 2018--Outstanding reviewer of Smart Materials and Structures 2018--Outstanding reviewer of Sensors & Actuators: A. Physical 2018--Outstanding reviewer of Utrasonics 2017--Principal Investigator of the "Young Scientist Studio" of Harbin Institute of Technology 2016--Poster Award of the 10th Asian Meeting on Electroceramics (AMEC-10, 2016) 2016--Best Poster Award of 13th International Workshop on Piezoelectric Materials and Applications in Actuators & Energy Conversion Materials and Devices 2016 (IWPMA & ECMD 2016) 2016--National Natural Science Foundation of China--Outstanding Youth Foundation 2016--Fok Ying Tung Education Foundation 2015--Best Paper Award of the 21st Youth Academic Annual Meeting of the Chinese Electronics Society 2015--State Key Laboratory of Robotics and System 2013--National Excellent Doctoral Dissertation Award of China 2013-- Excellent Young Talent of Harbin Institute of Technology 2012--Chinese Mechanical Engineering Society Hiwin Doctoral Dissertation Award 2012--Excellent Doctoral Dissertations of Harbin Institute of Technology 2012--Chinese Excellent Publications BookAward-Nomination Award 2011--Heilongjiang Province Science and Technology Invention Award-2nd Prize 2011--Outstanding Paper Award of The10th Conference on Vibration Theory and Application 2009--Best Poster Award of Joint Meeting of the 12th International Meeting on Ferroelectrics and 18th IEEE International Symposium on the Application of Ferroelectrics 2009--Outstanding Paper Award of Chinese Society of Naval Architecture and Marine Engineering Professional Membership and Academic Service 名称 Associate Editor of IEEE Transactions on Industrial Electronics (2019-) Associate Editor of IEEE Transactions on Robotics (2022-) Associate Editor of Journal of Field Robotics (2022-) Associate Editor of IEEE Access (2017-) Editorial Board Member of Materials (2023-) Topic Editor of Materials (2020-2023) Senior member of Chinese Mechanical Engineering Society IEEE Senior Member Academic Committee Chair of the 21th Youth Academic Conference of the Chinese Electronic Society Guest Editor of Actuators (Special Issue "Actuating, Sensing, Control, and Instrumentation for Ultra Precision Engineering") (2022-2023) Guest Editor of Materials (Special Issue "Piezoelectric Materials and Piezoelectric Robots") (2022-2023) Guest Editor of "Applied Sciences" (Special Issue "Piezoelectric Actuators") (2017-2018) 名称 Faculty 名称 Yingxiang Liu(刘英想), Professor Research interests: piezoelectric actuators, piezoelectric robots, ultrasonic motors, ultrasonic transducers, micro-nano manipulations, piezoelectric micro jets, vibration control, fish robots, soft robots, micro robots and artificial muscles Email: liuyingxiang868@hit.edu.cn Jie Deng(邓杰), Associate Professor Research interests: piezoelectric actuators, piezoelectric robots, micro-nano manipulations and nano positioning Email: dengjie21@hit.edu.cn Shijing Zhang(张仕静), Associate Research Fellow (副研究员) Research interests: piezoelectric actuators, robots, micro-nano manipulations, piezoelectric tilting mirror Email: zhangshijing@hit.edu.cn Graduate Students 名称 Name Year (join group) Research Topic Haoxuan He何昊烜 2023.08 (ME) Small swiming robot Yilin Zhang张奕霖 2023.08 (ME) Inchworm piezoelectric actuator Yuxin Liu刘雨欣 2023.08 (ME) Piezoelectric motion platform Jichao Chen陈继超 2023.08 (ME) Piezoelectric platform and motion control Xinli Qu屈心立 2023.08 (ME) Piezoelectric manipulator Bolong Liu柳博龙 2023.08 (ME) Piezoelectric platform Shuo Ma马铄 2023.08 (ME) Ultrasonic motor Youwei Liu刘有为 2023.08 (PhD) Small robots Yuzhu Zhao赵昱著 2023.08 (PhD) Piezoelectric ultrasonic transducers Yu Gao高宇 2023.08 (PhD) Piezoelectric robots Boliang Xu许柏梁 2022.09 (ME) Piezoelectric nano positioner Fang Che车芳 2022.09 (ME) Small ultrasonic motor Yikai Ma马艺恺 2022.09 (ME) Small piezoelectric robot Baoyi Liu刘保熠 2022.09 (ME) Piezoelectric robots Shuhong Zhang张庶宏 2022.09 (ME) Piezoelectric manipulator Ziteng Liu刘子腾 2022.09 (ME) Small mobile robot Daqing Liu刘大庆 2022.09 (ME) Amphibious robot Yue Zhang张岳 2022.09 (ME) piezoelectric ultrasonic robot Zefeng Ding丁泽峰 2022.09 (ME) Piezoelectric transducer and robot Jianhua Sun孙建华 2022.09 (PhD) Piezoelectric actuators and nano manipulations Wenhui Yu于文慧 2022.09 (PhD) Piezoelectric actuators Jianxing Li李建行 2022.09 (PhD) Piezoelectric robots Jinghan Guan关景晗 2021.09 (PhD) Piezoelectric actuators Mingxin xun荀铭鑫 2021.09 (PhD) Piezoelectric actuators and nano manipulations Dehong Wang王德鸿 2021.09 (PhD) Small robots Weiyi Wang王玮亦 2021.09 (PhD) Piezoelectric robots Yingzhi Wang王英智 2021.03 (PhD) Micro ultrasonic motors Jing Li李京 2020.09 (PhD) Small piezoelectric robots Xiang Gao高祥 2020.09 (PhD) Piezoelectric manipulators Jin Sun孙晋 2020.09 (PhD) Artifical muscles and soft robots Jianfei Cheng程建飞 2020.09 (PhD) Piezoelectric actuators and nano-fabrication Qingbing Chang常庆兵 2019.08 (PhD) Piezoelectric actuation for large scale precision posture alignment Yuming Feng冯禹铭 2019.08 (PhD) Piezoelectric micro jets and 3D printing Fei Lu卢飞 2019.08 (PhD) Piezoelectric devices and vibration control Xuefeng Ma马雪峰 2019.08 (PhD) Piezoelectric actuators Xinqi Tian田鑫琦 2016.09 (PhD) Linear precision piezoelectric actuating Alumni 名称 Name Year (graduation) Research Topic Current Affiliation Pengfei Du杜鹏飞 2023.12(PhD) Research on sensing and actuating integrated longitudinal bending ultrasonic tools based on constant frequency amplitude regulation 东北林业大学 Shijing Zhang张仕静 2023.12(PhD) Research on configuration creation of multi-dimensional piezoelectric functional units and multi-degree of freedom macro-micro manipulations 哈尔滨工业大学 He Li李赫 2023.09(PhD) Research on the bending hybrid ultrasonic motor and low speed regulation 昆明理工大学 Yuzhu Zhao赵昱著 2023.06(ME) Research on design and experiment of a longitudinal vibration composite monopod planar piezoelectric robot 本校攻博 Yu Gao高宇 2023.06(ME) Research of piezoelectric ceramic built-in reconfigurable microminiature piezoelectric robot 本校攻博 Chenglin Yang杨成林 2023.06(ME) Research of a 3-DOF stick-slip cross scale rotary piezoelectric actuator 海康威视(杭州) Hongfei Zhao赵洪飞 2023.06(ME) Research on vibration direct drive modular small mobile robot and its motion control 北京航天二院 Fanheng Zhang张范衡 2023.06(ME) Design and experimental research of underwater micro-robot based on vibrating jet 华为技术有限公司(上海) Chenshuo He何晨硕 2023.06(ME) Research on bending and twisting flexible sensing based on coiled carbon black nylon 中电十三所 Hongpeng Yu于洪鹏 2023.05(PhD) Research on a hexapod piezoelectric robot for cross-scale micro/nano manipulations 华为技术有限公司(东莞) Qi Su苏琪 2023.03(PhD) Construction and experimental research of piezoelectric precision manipulation system for cross-scale micro/nano scratching 新加坡国立大学 Dong Zhou周栋 2022.12(PhD) Research on output force and deformation characteristics of self-sensing multi-twisted artificial muscles 南京农业大学 Hengyu Li李恒禹 2022.12(PhD) Investigation into resonant and non-resonant dual-mode active valve piezoelectric pump 中科院北京纳米能源与系统研究所 Jianhua Sun孙建华 2022.07(ME) Research on minimum quantity active lubrication device for space bearing based on piezoelectric actuation 本校攻博 Wenhui Yu于文慧 2022.07(ME) Research on composite modeling of hysteretic dynamics of two-dimensional piezoelectric platform and its motion characteristics 本校攻博 Jianxing Li李建行 2022.07(ME) Research on design and experiments of piezoelectric autofocus and pose adjustment system 本校攻博 Ke Yan闫轲 2022.07(ME) Research on actuation principle and motion characteristics of hexapod piezoelectric robot 华为技术有限公司(西安) Fei Qin覃飞 2022.07(ME) Piezoelectric balance system and experimental research based on resonant frequency shift 华为技术有限公司(东莞) Yuan Fu富源 2022.07(ME) Design and experimental research of bionic rays driven by twisted and coiled artificial muscles 航天五院502所 Daqing Liu刘大庆 2022.06(BE) Research on bimorph beam type rotary piezoelectric actuator and its small special power supply 本校攻硕 Ziteng Liu刘子腾 2022.06(BE) Design and experimental analysis of hexapod resonant small piezoelectric robot 本校攻硕 Boliang Xu许柏梁 2022.06(BE) Design and experimental research of linear piezoelectric robot based on jumping mode 本校攻硕 Fang Che车芳 2022.06(BE) Design and experiment of small bidirectional standing wave piezoelectric actuator 本校攻硕 Yi Gui桂一 2022.06(BE) Design and experiment of soft humanoid neck joint driven by twisted artificial muscles 本校攻硕 Xintian Tang唐心田 2021.09(PhD) Research on multi-functionalization and application of twisted and coiled polymer fiber artificial muscles 成都飞机工业(集团)有限责任公司 Weiyi Wang王玮亦 2021.07(ME) Design and experimental research of a herringbone biped piezoelectric robot 本校攻博 Dehong Wang王德鸿 2021.07(ME) Design and experimental research of small amphibious robot using direct vibration drive 本校攻博 Mingxin xun荀铭鑫 2021.07(ME) Research on design and motion control of a cross-scale longitudinal-torsional motion conversion rotary piezoelectric actuator 本校攻博 Yuntian Guan关云天 2021.07(ME) A cantilever-type piezoelectric ultrasonic motor and its application in linear motion platform 德州仪器(北京) Yiqing Li李宜卿 2021.07(ME) Design and experimental research of large stroke nano-linear piezoelectric retractor 华为技术有限公司(北京) Le Yang杨乐 2021.07(ME) Design and experimental research of underwater reconfigurable drive unit based on piezoelectric jet 中电十三所 Shaopeng He贺少鹏 2021.07(ME) Preparation of calcium alginate microspheres based on piezoelectric micro jet 中电十三所 Yuting Cong丛宇霆 2021.07(BE) Manufacture and application of the enameled wire tight coiled twisted artificial muscle 亚琛大学攻硕 Chenglin Yang杨成林 2021.07(BE) Design and experimental study of a small pipe piezoelectric robot 本校攻硕 Yuting Tao陶钰婷 2021.07(BE) Design and experimental study of a large-scale linear piezoelectric platform 香港大学攻硕 Jianzhen Jiang姜鉴真 2021.07(BE) Design and experimental study of a quadruped ultrasonic motor 哈工大机电学院科研助理 Minxiang Shu舒旻翔 2021.07(BE) Design and experimental study of active lubrication device based on piezoelectric valve 上海交通大学攻硕 Qicheng Zhu祝启程 2021.07(BE) Design and experiments of piezoelectric micro-jet using a longitudinal transducer 中国重型汽车集团有限公司 Liang Wang王良 2021.4(PhD) Research of resonant and non-resonant dual-mode longitudinal-bending linear piezoelectric actuator 东北电力大学 Jie Deng邓杰 2020.10(PhD) Research on quadruped piezoelectric actuator with three degrees of freedom and its motion characteristics 哈尔滨工业大学 Jing Li李京 2020.07(ME) Design and experiment of a micro-miniature resonant multi-foot piezoelectric robot 本校攻博 Xiang Gao高祥 2020.07(ME) Design and experimental research of a miniature finger-shaped two-dimensional precision piezoelectric joint 本校攻博 Shenghui Liu刘生辉 2020.07(ME) A 2-DOF insertion needle using inertia piezoelectric actuator and motion control 上海通用电气 Binrui Zhang张彬瑞 2020.07(ME) Development and control system of a linear stepping piezoelectric actuator with adjustable friction forces of the driving feet 上海航天八院 Sheng Bi毕胜 2020.07(ME) Design and numerical simulation of an ultrasonic surface finishing and strengthening device 上海航天八院 Runju Wang王润举 2020.07(ME) Research on printing technology of hot melt solder particles based on piezoelectric microjet technology 普联技术有限公司(TP link) Xing Fu付兴 2020.07(ME) Research on tensegrity robot driven by flexible artificial muscle and its motion control 深圳迈瑞生物医疗电子股份有限公司 Sheng Yan鄢胜 2020.06(BE) Piezoelectric micropump 本校攻硕 Hao Wang王镐 2020.06(BE) Soft robot 扬州曙光光电自控有限责任公司 Xiaotian Li李啸天 2020.06(BE) Piezoelectric underwater vehicle 海外攻硕 Li Ma马立 2020.06(BE) Piezoelectric underwater vehicle 洛阳轴研科技股份有限公司 Hongyu Yang杨宏宇 2020.06(BE) Artificial muscle 本校攻硕 Haori Zhang张昊日 2020.06(BE) Piezoelectric actuator 海外攻硕 Guang Cai蔡广 2020.06(BE) Parallel robot 本校攻硕 Shijing Zhang张仕静 2019.07(ME) Research on a Spherical Two-DOF Precision Piezoelectric Actuator and Its Motion Control Technology 本校攻博 Weidong Zuo左伟东 2019.07(ME) Design and Experimental Research of Bionic Hexapod Soft Robot Driven by Artificial Muscle 华为技术有限公司 Zhengfei Luan栾正斐 2019.07(ME) Research on Deformable Mechanism Driven by Flexible Artificial Muscle and Its Motion Control 上海汽车集团股份有限公司技术中心 Wangxin Li李旺鑫 2019.07(ME) Research on Shafting Active Oil Supply Technology Based on Microfluidic Piezoelectric Injection 一汽大众汽车有限公司 Yuntian Guan关云天 2019.06(BE) Piezoelectric ultrasonic motor 本校攻硕 Yiqing Li李宜卿 2019.06(BE) Inchworm piezoelectric actuator 本校攻硕 Hongfu Tang唐洪福 2019.06(BE) Piezoelectric micro pump 本校攻硕 Yichao Dong董艺超 2019.06(BE) Piezoelectric ultrasonic motor 哈尔滨工程大学,攻硕 Jiangfeng Yao姚剑锋 2019.06(BE) Piezoelectric ultrasonic motor / Zhenning Zhou周振宁 2019.06(BE) Piezoelectric micro pump 上海交通大学,攻博 Zizheng Zhang张子正 2019.06(BE) Piezoelectric micro jet 山东维柴集团 Shenwei Qu曲申威 2019.06(BE) Tensegrity robot / Shuhang Zhang张舒航 2019.06(BE) Crawling robot using the resonant vibrations 出国,加州大学圣地亚哥分校 Kai Li李凯 2018.07(ME) Driving characteristics research and application of the twisted and coiled actuator 常州常发实业集团 Zhihang Shen申志航 2018.07(ME) Research on two-degree-of-freedom linear motion platform actuated by ultrasonic motor and its driving control system 上海汽车集团股份有限公司技术中心 Qiangqiang Shen沈强强 2018.07(ME) Research on a longitudinal-bending hybrid stepping piezoelectric actuator and its control system 汇川技术(宁波) Kailei Xue薛凯磊 2018.07(ME) Researchon multi-beams linear piezoelectric actuator and its control system 常州常发实业集团 Yun Wang王云 2018.07(ME) Research on the stepping peristaltic rotary precise piezoelectric actuator and its control system 香港科技大学(读博) Pengfei Liu刘鹏飞 2018.06(BE) Robot fish 中国科学技术大学攻硕 Runliu Shan单润柳 2018.06(BE) Jumping robot 上海交通大学攻硕 Shenghui Liu刘生辉 2018.06(BE) Artifical muscle 本校攻硕 Xing Fu付兴 2018.06(BE) Inchworm type soft robot 本校攻硕 Ruiju Wang王润举 2018.06(BE) Motion control of piezoelectric actuator 本校攻硕 Binrui Zhang张彬瑞 2018.06(BE) Inchworm type piezoelectric actuator 本校攻硕 Dongmei Xu徐冬梅 2017.12(PhD) Integrated design of resonance and non-resonance modesand actuating methods research of piezoelectric actuatorusing bending motions 西安科技大学 Jipeng Yang闫纪朋 2017.07(ME) Piezoelectric ultrasonic motor used in rotatable and deployable sleeve mechanism 上海交通大学读博 Zhizheng Gu谷志征 2017.07(ME) Two-dimensional motion stage driving by piezoelectric actuator 联合汽车电子有限公司 Yuyang Liu刘宇阳 2017.07(ME) Precision linear motion system driven by stepping piezoelectric actuator 成都飞机工业(集团)有限责任公司 Liangliang Zhao赵亮亮 2017.07(ME) Linear piezoelectric actuator and driving power supply for deployable mechanism 中国航天科技集团航天六院7103厂 Hongpeng Yu于洪鹏 2017.07(BE) Ultrasonic motor 本校攻硕 Wei Du杜为 2017.07(BE) Transient characteristics of piezoelectric actuator 出国,卡耐基梅隆大学 Hao Liang梁昊 2017.07(BE) Micro robot 本校攻硕 Yaolong Zhang张耀隆 2017.07(BE) Robot fish 本校攻硕 Xiaohui Yang杨小辉 2016.04(PhD) Ultrasonic motor using longitudinal-bendinghybrid vibrations 山东理工大学 Chunhong Li李春红 2016.07(ME) Bidirectional standing wave piezoelectric actuator 德昌电机(深圳)有限公司 Dongdong Shi史东东 2016.07(ME) Exciting method for piezoelectric actuatorusing bending modes 中国电子科技集团第三研究所 Dingwen Wang王鼎汶 2016.07(ME) Step peristalsis piezoelectric actuator 中国电子科技集团第三研究所 Xintian Tang唐心田 2016.07(BE) Ultrasonic drill 本校读博 Kai Li李凯 2016.07(BE) Jumping robot 本校攻硕 Kailei Xue薛凯磊 2016.07(BE) Ultrasonic motor 本校攻硕 Qiangqiang Shen沈强强 2016.07(BE) Ultrasonic motor 本校攻硕 Zhihang Shen申志航 2016.07(BE) Soft robot 本校攻硕 Yun Wang王云 2016.07(BE) Piezoelectric actuator 本校攻硕 Zhaoyang Yu于昭洋 2015.07 (ME) Ultrasonic motor 国电博纳(北京) Yuexin Gao高岳鑫 2015.07 (ME) Ultrasonic motor 一汽大众 Jipeng Yang闫纪朋 2015.07 (BE) Ultrasonic motor 本校攻硕 Long Sheng盛隆 2015.07 (BE) Parallel Robot 出国(Boston University) Xingchao Dong董兴超 2015.07 (BE) Fish robot 工作 Qingwu Ma马清伍 2013.07 (BE) Motion simulation platform 本校攻硕 Yajun Wei魏雅君 2013.07 (BE) Motion simulation platform 本校攻硕 Yi Wang王一 2012.07 (BE) Motion simulation platform 出国 压电驱动理论与技术 title 1. piezoelectric actuators 2. piezoelectric robots 3. ultrasonic motors 4. ultrasonic transducers 5. micro-nano manipulations 6. nano positioning 7. piezoelectric micro jets 9. vibration control 仿生机器人理论与技术 名称 1. bionic robots 2. fish robots 3. soft robots 4. micro robots 5. artificial muscles 学术专著(Books) 名称 2. 刘英想, 邓杰, 陈维山 著. 压电驱动技术, 华中科技大学出版社, 2022. 1. 陈维山, 刘英想, 石胜君 著. 纵弯模态压电金属复合梁式超声电机, 哈尔滨工业大学出版社, 2011. 代表性期刊论文(Representative Journal Papers) 名称 2024 233. Yuming Feng, Junkao Liu, Jie Deng, Shijing Zhang*, Yingxiang Liu*, A review on droplet-based 3D printing with piezoelectric micro-jet device, Smart Materials and Structures, 2024, newly accepted () 232. Mingxin Xun, Jing Li, Jie Deng*, Yingxiang Liu*, Development of a one-legged piezoelectric robot with agile motion, high-speed and large-load capabilities, IEEE Transactions on Industrial Electronics, 2024, newly accepted () 231. Jinghan Guan#, Jie Deng#, Shijing Zhang*, Junkao Liu, Mingxin Xun, Qingbing Chang, Yingxiang Liu*, Development of a monopod piezoelectric robot for small parasitic displacement and planar cross-scale locomotion, IEEE Transactions on Industrial Electronics, 2024, newly accepted () 230. Jie Deng*#, Yue Zhang#, Jing Li, Yingxiang Liu*, Design and experimental study of a planar piezoelectric actuator with resonant actuation, Ceramics International, 2024, newly accepted (https://www.sciencedirect.com/science/article/pii/S027288422400703X) 229. Jing Li, Baoyi Liu, Jie Deng*, Yingxiang Liu*, A miniature multi-DOF ring-shaped piezoelectric actuator capable of driving both flat and spherical movers, Ceramics International, 2024, newly accepted (https://www.sciencedirect.com/science/article/pii/S0272884224007107) 228. Yuming Feng, Yingxiang Liu*, Jie Deng, Junkao Liu, Suppression of the height deviation on metal bumps manufacturing by an ultrasonic vibration control, Ultrasonics, 2024, 138: 107270 (https://www.sciencedirect.com/science/article/pii/S0041624X24000325) 227. Yuzhu Zhao#, Shijing Zhang#, Jie Deng*, Jing Li, Yingxiang Liu*, Development of a 3-DOF planar monopod piezoelectric robot actuated by multidirectional spatial elliptical trajectories, IEEE Transactions on Industrial Electronics, 2024, newly accepted (https://ieeexplore.ieee.org/document/10459712) 226. Qingbing Chang, Yingxiang Liu*,Weishan Chen, Jie Deng, Shijing Zhang, Research on confocal and co-phasing adjustments of optical mirrors by a six-DOF cross-scale piezoelectric platform, IEEE Transactions on Industrial Electronics, 2024, newly accepted (https://ieeexplore.ieee.org/document/10449715) 225. Qingbing Chang, Weishan Chen, Shijing Zhang, Jie Deng*, Yingxiang Liu*, Review on multiple-degree-of-freedom cross-scale piezoelectric actuation technology, Advanced Intelligent Systems, 2024, newly accepted https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300780 224. Jie Deng#, Daqing Liu#, Weiyi Wang#, Yingxiang Liu*, A compact bimorph rotary piezoelectric actuator with customized small power supply, Science China Technological Sciences, 2024, newly accepted https://www.sciengine.com/SCTS/doi/10.1007/s11431-023-2581-9 2023 223. Yuming Feng, Yingxiang Liu*, Jie Deng, Junkao Liu, Flow and thermal coupling analysis in metal droplet-based 3D printing: Evolution mechanism and regulation strategy under ultrasonic vibration, Applied Thermal Engineering, 2024, 240: 122232 https://www.sciencedirect.com/science/article/pii/S1359431123022615 222. Pengfei Du, Yingxiang Liu*, Weishan Chen, Wangjie Hu, Junjie Zhang, Jie Deng, A 2D ultrasonic-assisted turning tool with function of in-situ vibration amplitude self-sensing, IEEE Transactions on Industrial Electronics, 2023, newly accepted https://ieeexplore.ieee.org/document/10122877 221. Jing Li#, Boliang Xu#, Jie Deng*, Weishan Chen, Yingxiang Liu*, Development of a miniature piezoelectric robot combining three unconventional inertial impact modes, Sensors and Actuators: A. Physical, 2024, 365: 114898 https://www.sciencedirect.com/science/article/pii/S0924424723007471 220. He Li, Yingxiang Liu*, Jie Deng, Dynamic modeling and experimental research on low-speed regulation of a bending hybrid linear ultrasonic motor, IEEE Transactions on Industrial Electronics, 2023, newly accepted https://ieeexplore.ieee.org/document/10336944/ 219. Xuefeng Ma, Junkao Liu, Shijing Zhang, Jie Deng*, Yingxiang Liu*, Recent trends in bionic stepping piezoelectric actuators for precision positioning: a review, Sensors and Actuators: A. Physical, 2023, 364: 114830 https://www.sciencedirect.com/science/article/pii/S0924424723006799 218. Jianxing Li#, Shijing Zhang#, Jie Deng*, Yingxiang Liu*, Development of a multifunction piezoelectric microscopic observation system based on visual feedback, IEEE Transactions on Industrial Electronics, 2023, newly accepted https://ieeexplore.ieee.org/document/10336538 217. Yingzhi Wang#, Weishan Chen, Jie Deng*, Jing Li, Yingxiang Liu*, Toward compact motorized lens: switch and focus a filter wheel with single piezoelectric tube, Advanced Materials Technologies, 2024, 9(1): 2301066 https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202301066 216. Jie Deng#, Chenglin Yang#, Qingbing Chang, Yingxiang Liu*, Development of a 3-DOF rotary piezoelectric actuator with compact structure, International Journal of Mechanical Sciences, 2024, 262: 108749 https://www.sciencedirect.com/science/article/pii/S0020740323006513 215. Jianfei Cheng, Weishan Chen, Xuefeng Ma, Jie Deng*, Mingxin Xun, Yingxiang Liu*, A low speed piezoelectric actuator with high displacement smoothness and its multi-objective optimized method, Smart Materials and Structures, 2023, 32: 105036 https://iopscience.iop.org/article/10.1088/1361-665X/acf96e 214. Jing Li#, Jie Deng#, Shijing Zhang#, Weishan Chen, Jie Zhao, Yingxiang Liu*, Developments and challenges of miniature piezoelectric robots: a review, Advanced Science, 2023, 10(36): 2305128 https://onlinelibrary.wiley.com/doi/10.1002/advs.202305128 213. Jing Li#, Fang Che#, Jie Deng*, Weishan Chen, Junkao Liu, Yingxiang Liu*, A linear ultrasonic motor with a hollowed and symmetrical stator, International Journal of Mechanical Sciences, 2024, 262: 108718 https://www.sciencedirect.com/science/article/pii/S0020740323006203 212. Qi Su#, Jianhua Sun#, Jie Deng*, Xuefeng Ma, Weishan chen, Yingxiang Liu*, Design and experimental evaluation of a micro scratching platform with cross-scale plane trajectory tracking capability, Sensors and Actuators: A. Physical, 2023, 362: 114629 https://www.sciencedirect.com/science/article/pii/S0924424723004788 211. Pengfei Du, Weishan Chen, Jie Deng, Shijing Zhang, Junjie Zhang, Yingxiang Liu*, A critical review of piezoelectric ultrasonic transducers for ultrasonic-assisted precision machining, Ultrasonics, 2023, 135: 107145 https://www.sciencedirect.com/science/article/pii/S0041624X23002214 210. Jianxing Li#, Shijing Zhang#, Jie Deng, Yingxiang Liu*, Development of a stepping piezoelectric actuator for an autofocus microscopic observation system, IEEE Transactions on Industrial Electronics, 2024, 71(6): 6107–6116 https://ieeexplore.ieee.org/document/10206027 209. Qi Su#, Jianhua Sun#, Jie Deng*, Yingxiang Liu*, Shijing Zhang, Implementation of cross-scale plane micro-scratching process driven by hybrid piezoelectric actuation, Smart Materials and Structures, 2023, 32: 095007 https://iopscience.iop.org/article/10.1088/1361-665X/ace814 208. Jie Deng#, Jing Li#, Ke Yan#, Yingxiang Liu*, Development of a miniature piezoelectric robot with high stability and strong load capacity based on hexapod of radial layout, IEEE/ASME Transactions on Mechatronics, 2024, 29(1): 754–766 https://ieeexplore.ieee.org/document/10179112 207. Shijing Zhang, Yuzhu Zhao, Fei Qin, Jie Deng*, Yingxiang Liu*, A piezoelectric balance system with mass automatic recognition ability based on resonant frequency shift, IEEE/ASME Transactions on Mechatronics, 2024, 29(1): 544–556 https://ieeexplore.ieee.org/document/10160205/ 206. Yuming Feng, Junkao Liu, Hengyu Li, Jie Deng, Yingxiang Liu*, Investigations into wetting and spreading behaviors of impacting metal droplet under ultrasonic vibration control, Ultrasonics Sonochemistry, 2023, 97: 106469 https://www.sciencedirect.com/science/article/pii/S1350417723001815 205. Pengfei Du, Weishan Chen, Shijing Zhang, Wangjie Hu, He Li, Jie Deng*, Junjie Zhang*, Yingxiang Liu*, Design of a compact 3D vibration-assisted turning device with large-amplitude and high-frequency for diversified microstructure sculpturing, IEEE Transactions on Industrial Electronics, 2024, 71(3): 2842–2852 https://ieeexplore.ieee.org/document/10122877 204. Jing Li, Jie Deng*, Shijing Zhang, Weiyi Wang, Yingxiang Liu*, An untethered tripodal miniature piezoelectric robot with strong load capacity inspired by land motion of seals, IEEE/ASME Transactions on Mechatronics, 2024, 29(1): 85–96 https://ieeexplore.ieee.org/document/10119549/ 203. Jing Li#, Jie Deng#, Shijing Zhang, Fang Che, Yingxiang Liu*, Step displacement improving method of inertial actuated piezoelectric robot based on diagonal deformation trajectory, IEEE Transactions on Industrial Electronics, 2024, 71(4): 3944–3952 https://ieeexplore.ieee.org/document/10117547 202. Qingbing Chang, Jie Deng*, Weishan Chen, Yingxiang Liu, An alternate drive method for improving the carrying load capacity and displacement smoothness of a vertical piezoelectric platform, Mechatronics, 2023, 92: 102983 https://www.sciencedirect.com/science/article/pii/S0957415823000399 201. Weiyi Wang#, Jie Deng#, Jing Li, Shijing Zhang, Yingxiang Liu*, A small and agile ring-shaped tripodal piezoelectric robot driven by standing and traveling mechanical waves, IEEE Transactions on Industrial Electronics, 2024, 71(3): 2769–2778 https://ieeexplore.ieee.org/document/10103812/ 200. Qingbing Chang#, Jie Deng#, Yingxiang Liu*, Shijing Zhang, Weishan Chen, Jie Zhao, Research on a locking device for power-off locking and 2-DOF backward motion suppression of a piezoelectric platform, IEEE Transactions on Industrial Electronics, 2024, 71(2): 1790–1800 https://ieeexplore.ieee.org/document/10091754/ 199. Mingxin Xun, Hongpeng Yu, Shijing Zhang, Qingbing Chang, Jie Deng*, Yingxiang Liu*, A large-step stick-slip rotary piezoelectric actuator with high velocity under low frequency and small backward motion, Smart Materials and Structures, 2023, 32: 055002 https://iopscience.iop.org/article/10.1088/1361-665X/acc439 198. Jin Sun, Dong Zhou, Yingxiang Liu*, Jie Deng, Shijing Zhang, Development of a minimally invasive surgical robot using self-helix twisted artificial muscles, IEEE Transactions on Industrial Electronics, 2024, 71(2): 1779–1789 https://ieeexplore.ieee.org/document/10077543/ 197. Jing Li, Jie Deng, Shijing Zhang, Yingxiang Liu*, Development of a miniature quadrupedal piezoelectric robot combining fast speed and nano-resolution, International Journal of Mechanical Sciences, 2023, 250: 108276 https://www.sciencedirect.com/science/article/pii/S0020740323001789 196. He Li, Jie Deng*, Yingxiang Liu*, Experimental research on the evolution characteristics of a bending hybrid ultrasonic motor during long-time operation, Ultrasonics, 2023, 131: 106957 https://www.sciencedirect.com/science/article/pii/S0041624X23000331 195. Shijing Zhang#, Yingxiang Liu#*, Jie Deng#, Xiang Gao, Jing Li, Weiyi Wang, Mingxin Xun, Xuefeng Ma, Qingbing Chang, Junkao Liu, Weishan Chen, Jie Zhao, Piezo robotic hand for motion manipulation from micro to macro, Nature Communications, 2023, 14: 500 https://www.nature.com/articles/s41467-023-36243-3 194. Xuefeng Ma, Junkao Liu, Jie Deng*, Qingbing Chang, Yingxiang Liu*, A simplified inchworm rotary piezoelectric actuator inspired by finger twist: design, modeling, and experimental evaluation, IEEE Transactions on Industrial Electronics, 2023, 70(12): 12660–12669 https://ieeexplore.ieee.org/document/10025010 193. Kai Li#, Xianxin Zhou#, Yingxiang Liu*, Jianhua Sun, Xinqi Tian, Haoyuan Zheng, Lu Zhang, Jie Deng, Junkao Liu, Weishan Chen, Jie Zhao, A 5 cm-scale piezoelectric jetting agile underwater robot, Advanced Intelligent Systems, 2023, 5(4): 2200262 https://onlinelibrary.wiley.com/doi/10.1002/aisy.202200262 192. Yingzhi Wang#, Jie Deng#, He Li, Xinqi Tian, Weishan Chen, Yingxiang Liu*, A resonant type thin plate piezoelectric actuator inspired by koala's locomotion, IEEE Transactions on Industrial Electronics, 2023, 70(8): 8235–8243 https://ieeexplore.ieee.org/document/10025008 2022 191. 刘英想, 邓杰, 常庆兵, 张仕静, 陈维山. 压电驱动技术研究进展与展望. 振动、测试与诊断, 2022, 42(6): 1045–1061 http://zdcs.nuaa.edu.cn/ch/reader/view_abstract.aspx?file_no=202206001&flag=1 190. Hongpeng Yu, Jie Deng, Yingxiang Liu*, Yingzhi Wang, Piezoelectric hybrid actuation mode to improve speeds in cross-scale micromanipulations, International Journal of Mechanical Sciences, 2023, 240: 107943 https://www.sciencedirect.com/science/article/pii/S0020740322008219 189. Hengyu Li, Weishan Chen, Yuming Feng, Jie Deng*, Yingxiang Liu*, Development of a novel high bandwidth piezo-hydraulic actuator for a miniature variable swept wing, International Journal of Mechanical Sciences, 2023, 240: 107926 https://www.sciencedirect.com/science/article/abs/pii/S0020740322008049 188. Wangjie Hu, Pengfei Du, Xu Qiu, Xuesen Zhao, Zhenjiang Hu, Junjie Zhang*, Yingxiang Liu*, Enhanced dry machinability of TC4 by longitudinal-bending hybridultrasonic vibration-assisted milling, Journal of Cleaner Production, 2022, 379: 134866 https://www.sciencedirect.com/science/article/abs/pii/S0959652622044390 187. Hengyu li, Junkao Liu, Yuming Feng, Jie Deng*, Yingxiang Liu*, A broadband, high-power resonant piezoelectric active-valve pump driven by sandwich bending transducers, IEEE Transactions on Industrial Electronics, 2023, 70(9): 9336–9345 https://ieeexplore.ieee.org/document/9935697 186. Jie Deng#, Weiyi Wang#, Shijing Zhang, Fei Lu, Yingxiang Liu*, An inertial bipedal piezoelectric actuator with integration of triple actuation modes, Smart Materials and Structures, 2022, 31: 115019 https://iopscience.iop.org/article/10.1088/1361-665X/ac993b 185. Jie Deng#, Chenglin Yang#, Yingxiang Liu*, Shijing Zhang, Jing Li, Xuefeng Ma, Hui Xie, Design and experiments of a small resonant inchworm piezoelectric robot, Science China Technological Sciences, 2023, 66(3): 821–829 https://www.sciengine.com/SCTS/doi/10.1007/s11431-022-2223-1 184. Shijing Zhang, Hongfei Zhao, Xuefeng Ma, Jie Deng, Yingxiang Liu*, A 3-DOF piezoelectric micromanipulator based on symmetric and antisymmetric bending of a cross-shaped beam, IEEE Transactions on Industrial Electronics, 2023, 70(8): 8264–8275 https://ieeexplore.ieee.org/document/9923575/ 183. Kai Li, Jianhua Sun, Shaopeng He, Xianxin Zhou, Hengyu Li, Yingxiang Liu*, On-demand preparation of calcium alginate microspheres via piezoelectric microfluidics, Sensors and Actuators: A. Physical, 2022, 347: 113925 https://www.sciencedirect.com/science/article/pii/S092442472200560X 182. Jin Sun, Dong Zhou, Jie Deng, Yingxiang Liu*, Development of a high flow rate soft pump driven by intersected twisted artificial muscles units, IEEE Transactions on Industrial Electronics, 2023, 70(7): 7153–7162 https://ieeexplore.ieee.org/document/9889073/ 181. Xuefeng Ma, Yingxiang Liu*, Jie Deng, Xiang Gao, Jianfei Cheng, A compact inchworm piezoelectric actuator with high speed: design, modeling, and experimental evaluation, Mechanical Systems and Signal Processing, 2023, 184: 109704 https://www.sciencedirect.com/science/article/pii/S0888327022007828 180. Dehong Wang#, Yingxiang Liu#*, Jie Deng#, Shijing Zhang, Jing Li, Weiyi Wang, Junkao Liu, Weishan Chen, Qiquan Quan, Gangfeng Liu, Hui Xie, Jie Zhao*, Miniature amphibious robot actuated by rigid-flexible hybrid vibration modules, Advanced Science, 2022, 9(29): 2203054 https://onlinelibrary.wiley.com/doi/10.1002/advs.202203054 179. Mingxin Xun#, Hongpeng Yu#, Yingxiang Liu*, Jie Deng, Shijing Zhang, Kai Li, A precise rotary piezoelectric actuator based on the spatial screw compliant mechanism, IEEE/ASME Transactions on Mechatronics, 2023, 28(1): 223–232 https://ieeexplore.ieee.org/document/9868231/ 178. Jianxing Li#, Shijing Zhang#, Yingxiang Liu*, Jie Deng, Xuefeng Ma, A 3-DOF inertial impact locomotion robot constructed on four piezoelectric bimorph actuators, Smart Materials and Structures, 2022, 31: 095008 https://iopscience.iop.org/article/10.1088/1361-665X/ac7d7e 177. Xianxin Zhou#, Kai Li#, Yingxiang Liu*, Jianhua Sun, Hengyu Li, Weishan Chen, Jie Deng, Development of an anti-hydropressure miniature underwater robot with multi-locomotion mode using piezoelectric pulsed-jet actuator, IEEE Transactions on Industrial Electronics, 2023, 70(5): 5044–5054 https://ieeexplore.ieee.org/document/9829027/ 176. Hongpeng Yu, Yingxiang Liu*, Jie Deng, Shijing Zhang, Weishan Chen, A 3-DOF piezoelectric robot with continuous walking gait aiming at cross-scale smooth motion, Science China Technological Sciences, 2023, 66(1): 233–242 https://www.sciengine.com/SCTS/article?doi=10.1007/s11431-022-2114-y&scroll= 175. Yingzhi Wang#, Jie Deng#, Shijing Zhang, He Li, Weishan Chen, Yingxiang Liu*, Design of a linear-rotary ultrasonic motor for optical focusing inspired by the bionic motion principles of the earthworms, International Journal of Smart and Nano Materials, 2022, 13(2): 346–365 https://www.tandfonline.com/doi/full/10.1080/19475411.2022.2084173 174. Weiyi Wang#, Jie Deng#, Yingxiang Liu*, Shijing Zhang, Jing Li, Xiang Gao, Design, modeling and experiment of a miniature biped piezoelectric robot, Smart Materials and Structures, 2022, 31: 075004 https://iopscience.iop.org/article/10.1088/1361-665X/ac6f9f 173. Yuming Feng, Junkao Liu, Hengyu Li, Xuefeng Ma, Pengfei Du, Kai Li, Yingxiang Liu*, Deposition behavior optimization of on-demand tin droplet with gravity based on piezoelectric micro-jet, International Journal of Heat and Mass Transfer, 2022, 192: 122902 https://www.sciencedirect.com/science/article/pii/S0017931022003623 172. Pengfei Du, La Han, Xu Qiu, Weishan Chen, Jie Deng, Yingxiang Liu*, Junjie Zhang*, Development of a high-precision piezoelectric ultrasonic milling tool using longitudinal-bending hybrid transducer, International Journal of Mechanical Sciences, 2022, 222: 107239 https://www.sciencedirect.com/science/article/pii/S0020740322001618 171. Qingbing Chang#, Xiang Gao#, Yingxiang Liu*, Jie Deng, Shijing Zhang, Weishan Chen, Development of a cross-scale 6-DOF piezoelectric stage and its application in assisted puncture, Mechanical Systems and Signal Processing, 2022, 174: 109072 https://www.sciencedirect.com/science/article/pii/S0888327022002436 170. Dong Zhou, Yingxiang Liu*, Jie Deng, Weishan Chen, Jin Sun, Yuan Fu, Designing and modeling of tightly wrapped twisted artificial muscles with large stroke and low hysteresis, IEEE Transactions on Industrial Electronics, 2022, 69(10): 10374–10384 https://ieeexplore.ieee.org/document/9739877 169. Jie Deng#, Shijing Zhang#, Yiqing Li, Xuefeng Ma, Xiang Gao, Hui Xie, Yingxiang Liu*, Development and experiment evaluation of a compact inchworm piezoelectric actuator using three-jaw type clamping mechanism, Smart Materials and Structures, 2022, 31: 045020 https://iopscience.iop.org/article/10.1088/1361-665X/ac59da 168. Fei Lu, Yingxiang Liu*, Weishan Chen, Jie Deng, Kai Li, Shijing Zhang, Xinqi Tian, Radial disturbance compensation device of cylindrical cantilever beam using embedded piezoelectric ceramics with bending mode, Mechanical Systems and Signal Processing, 2022, 172: 109009 https://www.sciencedirect.com/science/article/abs/pii/S088832702200187X 167. Shijing Zhang, Yingxiang Liu*, Xiang Gao, Jie Deng, Hongpeng Yu, Weishan Chen, Development of a cross-scale 2-DOF piezoelectric rotary platform based on active friction switching, International Journal of Mechanical Sciences, 2022, 220: 107165 https://www.sciencedirect.com/science/article/abs/pii/S0020740322000911 166. Kai Li, Runju Wang, Junkao Liu*, Yuming Feng, Yingxiang Liu*, On-demand direct printing of tin microdots by a piezoelectric microjet: design, simulation, and experimental evaluation, Smart Materials and Structures, 2022, 31: 045017 https://iopscience.iop.org/article/10.1088/1361-665X/ac58d4 165. Jing Li, Yingxiang Liu*, Jie Deng, Shijing Zhang, Weishan Chen, Development of a linear piezoelectric micro-actuator inspired by the hollowing art, IEEE Transactions on Industrial Electronics, 2022, 69(10): 10407–10416 https://ieeexplore.ieee.org/document/9720223 164. Dong Zhou, Yingxiang Liu*, Jie Deng, Jin Sun, Yuan Fu, Force enhanced multi-twisted and coiled actuator and its application in temperature self-adaptive tensegrity mechanisms, IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 3964–3976 https://ieeexplore.ieee.org/document/9720296 163. Xiang Gao, Yingxiang Liu*, Shijing Zhang, Jie Deng, Junkao Liu, Development of a novel flexure-based XY platform using single bending hybrid piezoelectric actuator, IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 3977–3987 https://ieeexplore.ieee.org/document/9720490/ 162. Jing Li, Jie Deng, Yingxiang Liu*, Shijing Zhang, Kai Li, Development of a planar tripodal piezoelectric robot with a compact ring structure, IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 3908–3919 https://ieeexplore.ieee.org/document/9717415 161. Jie Deng, Yingxiang Liu*, Jing Li, Shijing Zhang, Hui Xie, Influence of multi-directional oscillations on output characteristics of inertial piezoelectric platform, IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 4122–4131 https://ieeexplore.ieee.org/document/9723501/ 160. Hongpeng Yu, Yingxiang Liu*, Jie Deng, Shijing Zhang, Weishan Chen, A collaborative excitation method for piezoelectric stick-slip actuator to eliminate rollback and generate precise smooth motion, Mechanical Systems and Signal Processing, 2022, 170: 108815 https://www.sciencedirect.com/science/article/pii/S0888327022000140 2021 159. Xinqi Tian, Weishan Chen, Binrui Zhang, Yingxiang Liu*, Restraining the backward motion of a piezoelectric stick-slip actuator with a passive damping foot, IEEE Transactions on Industrial Electronics, 2022, 69(10): 10396–10406 https://ieeexplore.ieee.org/document/9658291 158. Jianfei Cheng, Jie Deng*, Yingxiang Liu*, Shijing Zhang, Fei Lu, Xinqi Tian, Weishan Chen, Step consistency active control method for inertial piezoelectric actuator using embedded strain gauges, Review of Scientific Instruments, 2021, 92: 125005 https://aip.scitation.org/doi/10.1063/5.0074699 157. Xuefeng Ma, Yingxiang Liu*, Jie Deng, Shijing Zhang, Junkao Liu, A walker-pusher inchworm actuator driven by two piezoelectric stacks, Mechanical Systems and Signal Processing, 2022, 169: 108636 https://www.sciencedirect.com/science/article/pii/S088832702100964X 156. Xinqi Tian, Weishan Chen, Yingxiang Liu*, Jie Deng, Kai Li, Study on improving the resolution of an H-shaped piezoelectric ultrasonic actuator by stick-slip principle, Smart Materials and Structures, 2022, 31: 015001 https://iopscience.iop.org/article/10.1088/1361-665X/ac36b1 155. Dong Zhou, Yingxiang Liu*, Xintian Tang, Jin Sun, Jie Deng, A lightweight and multi-motion crawling tensegrity robot driven by twisted artificial muscles, IEEE Transactions on Industrial Electronics, 2022, 69(11): 11447–11457 https://ieeexplore.ieee.org/document/9612114 154. Hongpeng Yu#, Yingxiang Liu#*, Jie Deng, Jing Li, Shijing Zhang, Weishan Chen, Jie Zhao, Bioinspired multilegged piezoelectric robot: the design philosophy aiming at high-performance micromanipulation, Advanced Intelligent Systems, 2022, 4(3): 2100142 https://onlinelibrary.wiley.com/doi/full/10.1002/aisy.202100142 153. Qingbing Chang, Yingxiang Liu*, Jie Deng, Shijing Zhang, Weishan Chen, Design of a precise linear-rotary positioning stage for optical focusing based on the stick-slip mechanism, Mechanical Systems and Signal Processing, 2022, 165: 108398 https://www.sciencedirect.com/science/article/pii/S0888327021007494 152. Pengfei Du, Yingxiang Liu*, Jie Deng, Hongpeng Yu, and Weishan Chen, A compact ultrasonic burnishing system for high precision planar burnishing: design and performance evaluation, IEEE Transactions on Industrial Electronics, 2022, 69(8): 8201–8211 https://ieeexplore.ieee.org/document/9529017 151. He Li, Yingxiang Liu*, Jie Deng*, Weishan Chen, Kai Li, Design philosophy for ultrasonic motors using the bending hybrid modes, Sensors and Actuators: A. Physical, 2021, 331: 113029 https://www.sciencedirect.com/science/article/pii/S0924424721004945 150. Xuefeng Ma, Yingxiang Liu*, Junkao Liu, Jie Deng, Crabbot: A pole-climbing robot driven by piezoelectric stack, IEEE Transactions on Robotics, 2022, 38(2): 765–778 https://ieeexplore.ieee.org/document/9520422 149. He Li, Jie Deng*, Shijing Zhang, Hongpeng Yu, Yingxiang Liu*, Design and experiment of a three-feet linear ultrasonic motor using third bending hybrid modes, Sensors and Actuators: A. Physical, 2021, 331: 112990 https://www.sciencedirect.com/science/article/pii/S0924424721004556 148. Hengyu Li, Yingxiang Liu*, Kai Li, Jie Deng, Yuming Feng, Junkao Liu, A resonant piezoelectric proportional valve for high-flowrate regulation operated by a bending sandwich actuator, Sensors and Actuators: A. Physical, 2021, 331: 112971 https://www.sciencedirect.com/science/article/pii/S0924424721004362 147. Qingbing Chang, Yingxiang Liu*, Jie Deng, Shijing Zhang and Weishan Chen, Development of a two-DOF piezoelectric posture alignment mechanism with low coupling based on a cross-orthogonal-axis structure, Smart Materials and Structures, 2021, 30: 085042 https://iopscience.iop.org/article/10.1088/1361-665X/ac112a 146. Jie Deng, Yingxiang Liu*, Jing Li, Shijing Zhang, Kai Li, Displacement linearity improving method of stepping piezoelectric platform based on leg wagging mechanism, IEEE Transactions on Industrial Electronics, 2022, 69(6): 6429–6432 https://ieeexplore.ieee.org/document/9479731 145. Jing Li, Jie Deng, Yingxiang Liu*, Hongpeng Yu, Xinqi Tian, Kai Li, A linear piezoelectric actuator based on working principle of three-petal mouth of a rabbit, IEEE Transactions on Industrial Electronics, 2022, 69(5): 5091–5099 https://ieeexplore.ieee.org/document/9446606 144. Dong Zhou, Weidong Zuo, Xintian Tang, Jie Deng* and Yingxiang Liu*, A multi-motion bionic soft hexapod robot driven by self-sensing controlled twisted artificial muscles, Bioinspiration & Biomimetics, 2021, 16: 045003 https://iopscience.iop.org/article/10.1088/1748-3190/ac0121 143. Yingxiang Liu#*, Jing Li#, Jie Deng#, Shijing Zhang, Weishan Chen, Hui Xie, Jie Zhao, Arthropod-metamerism-inspired resonant piezoelectric millirobot, Advanced Intelligent Systems, 2021, 3(8): 2100015 https://onlinelibrary.wiley.com/doi/full/10.1002/aisy.202100015 142. Pengfei Du, Yingxiang Liu*, Weishan Chen, Shijing Zhang, Jie Deng, Fast and precise control for the vibration amplitude of an ultrasonic transducer based on fuzzy PID control, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68(8): 2766–2774 https://ieeexplore.ieee.org/document/9427205/ 141. Jie Deng#, Shenghui Liu#, Yingxiang Liu*, Liang Wang, Xiang Gao, Kai Li, A 2-DOF needle insertion device using inertial piezoelectric actuator, IEEE Transactions on Industrial Electronics, 2022, 69(4): 3918–3927 https://ieeexplore.ieee.org/document/9409693 140. Xiang Gao, Jie Deng*, Shijing Zhang, Jing Li, Yingxiang Liu*, A compact 2-DOF micro/nano manipulator using single miniature piezoelectric tube actuator, IEEE Transactions on Industrial Electronics, 2022, 69(4): 3928–3937 https://ieeexplore.ieee.org/document/9403929/ 139. Yuming Feng, Junkao Liu, Kai Li*, Hengyu Li, Jie Deng, Yingxiang Liu*, Waveform optimization of piezoelectric micro-jet for the control of metal micro-droplet ejection, IEEE Transactions on Industrial Electronics, 2022, 69(4): 3967–3976 https://ieeexplore.ieee.org/document/9403968 138. Hengyu Li, Junkao Liu, Kai Li, Jie Deng, Yingxiang Liu*, Development of a high-pressure, self-priming valve-based piezoelectric pump using bending transducers, IEEE Transactions on Industrial Electronics, 2022, 69(3): 2759–2768 https://ieeexplore.ieee.org/document/9384171/ 137. Qingbing Chang, Weishan Chen, Junkao Liu, Hongpeng Yu, Jie Deng*, Yingxiang Liu*, Development of a novel two-DOF piezo-driven fast steering mirror with high stiffness and good decoupling characteristic, Mechanical Systems and Signal Processing, 2021, 159: 107851 https://www.sciencedirect.com/science/article/pii/S0888327021002466 136. Kai Li, Yingxiang Liu*, Junkao Liu, Weishan Chen, Study on the performance of a designed annular piezoelectric microjet for active lubrication of space bearing, IEEE Transactions on Industrial Electronics, 2022, 69(3): 2728–2736 https://ieeexplore.ieee.org/document/9380955 135. Qi Su, Weishan Chen, Jie Deng, Xinqi Tian, Yingxiang Liu*, A 3-DOF sandwich piezoelectric manipulator with low hysteresis effect: design, modeling and experimental evaluation, Mechanical Systems and Signal Processing, 2021, 158: 107768 https://www.sciencedirect.com/science/article/pii/S0888327021001631 134. Shijing Zhang, Yingxiang Liu*, Jie Deng, Kai Li, Qingbing Chang, Development of a low capacitance two-axis piezoelectric tilting mirror used for optical assisted micromanipulation, Mechanical Systems and Signal Processing, 2021, 154: 107602 https://www.sciencedirect.com/science/article/pii/S0888327020309882 2020 133. Hengyu Li, Junkao Liu, Kai Li, Jie Deng, and Yingxiang Liu*, Development of a high differential pressure piezoelectric active proportional regulation valve using a bending transducer, IEEE Transactions on Industrial Electronics, 2021, 68(12): 12513–12523 https://ieeexplore.ieee.org/document/9301266 132. Hengyu Li, Junkao Liu, Kai Li*, Yingxiang Liu*, A review of recent studies on piezoelectric pumps and their applications, Mechanical Systems and Signal Processing, 2021, 151: 107393 https://www.sciencedirect.com/science/article/pii/S0888327020307792 131. Jie Deng, Yingxiang Liu*, Shijing Zhang, Jing Li, Development of a nano-positioning platform with large travel range based on bionic quadruped piezoelectric actuator, IEEE/ASME Transactions on Mechatronics, 2021, 26(4): 2059–2070 https://ieeexplore.ieee.org/document/9225729/ 130. Shenghui Liu#, Xintian Tang#, Dong Zhou , Yingxiang Liu*, Fascicular module of nylon twisted actuators with large force and variable stiffness, Sensors and Actuators: A. Physical, 2020, 315: 112292 https://www.sciencedirect.com/science/article/pii/S0924424720302338 129. Shijing Zhang, Yingxiang Liu*, Jie Deng, Xinqi Tian, Xiang Gao, Development of a two-DOF inertial rotary motor using a piezoelectric actuator constructed on four bimorphs, Mechanical Systems and Signal Processing, 2021, 149: 107213 https://www.sciencedirect.com/science/article/pii/S0888327020305999 128. Shijing Zhang, Yingxiang Liu*, Jie Deng*, Junkao Liu, A novel sensitive piezoelectric mass balance used for weightless environment, Science China Technological Sciences, 2021, 64(4): 745–754 http://engine.scichina.com/publisher/scp/journal/SCTS/doi/10.1007/s11431-020-1698-9?slug=abstract 127. Hongpeng Yu, Yingxiang Liu*, Xinqi Tian, Shijing Zhang, Junkao Liu, A precise rotary positioner driven by piezoelectric bimorphs: design, analysis and experimental evaluation, Sensors and Actuators: A. Physical, 2020, 313: 112197 https://www.sciencedirect.com/science/article/pii/S0924424720303502 126. Liang Wang, Yingxiang Liu*, Qiangqiang Shen, Junkao Liu, Design and experimental verification of a bolt-clamped piezoelectric actuator based on clamping and driving mechanism, Mechanical Systems and Signal Processing, 2021, 146: 107065 https://www.sciencedirect.com/science/article/pii/S0888327020304519 125. Jie Deng, Yingxiang Liu*, Shijing Zhang, Junkao Liu, Modeling and experiments of a nano-positioning and high frequency scanning piezoelectric platform based on function module actuator, Science China Technological Sciences, 2020, 63(12): 2541–2552 http://engine.scichina.com/publisher/scp/journal/SCTS/doi/10.1007/s11431-020-1676-7?slug=abstract 124. Jiefeng Sun, Brandon Tighe, Yingxiang Liu, and Jianguo Zhao*, Twisted-and-coiled actuators with free strokes enable soft robots with programmable motions, Soft Robotics, 2021, 8(2): 213–225 https://www.liebertpub.com/doi/10.1089/soro.2019.0175 123. Pengfei Du, Weishan Chen, Jie Deng, Kai Li, Yingxiang Liu*, Effects of knurl tooth angle on mechanical and thermal behaviors of aluminum ultrasonic welding, Ultrasonics, 2020, 108: 106207 https://www.sciencedirect.com/science/article/pii/S0041624X20301463 122. Hengyu Li, Junkao Liu, Yingxiang Liu*, Kai Li, Yuming Feng, Development of a resonant piezoelectric micro-jet for high-viscosity liquid using a longitudinal transducer, Mechanical Systems and Signal Processing, 2021, 146: 107012 https://www.sciencedirect.com/science/article/pii/S0888327020303988 121. Xinqi Tian, Yingxiang Liu*, Jie Deng, Liang Wang, Weishan Chen*, A review on piezoelectric ultrasonic motors for the past decade: classification, operating principle, performance, and future work perspectives, Sensors and Actuators: A. Physical, 2020, 306: 111971 https://www.sciencedirect.com/science/article/pii/S0924424720300583 120. Xuefeng Ma, Junkao Liu, Jie Deng, Qiang Liu, Yingxiang Liu*, A rotary traveling wave ultrasonic motor with four groups of nested PZT ceramics: design and performance evaluation, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(7): 1462–1469 https://ieeexplore.ieee.org/document/8986671 119. Qi Su, Shuhang Zhang, Yingxiang Liu*, Jie Deng, A quadruped crawling robot operated by elliptical vibrations of cantilever legs, IEEE Transactions on Industrial Electronics, 2021, 68(2): 1466–1474 https://ieeexplore.ieee.org/document/8984733 118. Zhibo Huang, Shengjun Shi, Weishan Chen*, Liang Wang, Lijun Wu, Yingxiang Liu*, Development of a novel spherical stator multi-dof ultrasonic motor using in-plane non-axisymmetric mode, Mechanical Systems and Signal Processing, 2020, 140: 106658 https://www.sciencedirect.com/science/article/pii/S0888327020300443 117. Xinqi Tian, Yingxiang Liu*, Jie Deng, Weishan Chen, Single-phase drive bending-bending piezoelectric actuator operated under 8-shaped trajectory vibration: concept, computation and experiment evaluation, Mechanical Systems and Signal Processing, 2020, 139: 106637 http://www.sciencedirect.com/science/article/abs/pii/S0888327020300236 116. Hongpeng Yu, Yingxiang Liu*, Jie Deng, Shijing Zhang, A novel piezoelectric stack for rotary motion by d15 working mode: principle, modeling, simulation and experiments, IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 491–501 http://ieeexplore.ieee.org/document/8957271 115. Liang Wang, Yuntian Guan, Yingxiang Liu*, Jie Deng, Junkao Liu, A Compact Cantilever Type Ultrasonic Motor with Nanometer Resolution: Design and Performance Evaluation, IEEE Transactions on Industrial Electronics, 2021, 68(1): 734–743 http://ieeexplore.ieee.org/document/8960657 114. Dong Zhou, Yingxiang Liu*, Xintian Tang, Jianguo Zhao, Differential sensing method for multidimensional soft angle measurement using coiled conductive polymer fiber, IEEE Transactions on Industrial Electronics, 2021, 68(1): 401–411 http://ieeexplore.ieee.org/document/8948368 2019 113. Kai Li, Weishan Chen, Junkao Liu, Hengyu Li, Naiming Qi, Yingxiang Liu*, Research on the spreading characteristics of biodegradable ethyl cyanoacrylate droplet of a piezoelectric inkjet, Sensors and Actuators: A. Physical, 2020, 302: 111810 http://www.sciencedirect.com/science/article/pii/S0924424719314001 112. Xiang Gao#, Shijing Zhang#, Jie Deng, Yingxiang Liu*, Development of a small two-dimensional robotic spherical joint using a bonded-type piezoelectric actuator, IEEE Transactions on Industrial Electronics, 2021, 68(1): 724–733 http://ieeexplore.ieee.org/document/8936544 111. Jie Deng, Yingxiang Liu*, Kai Li, Shijing Zhang, Design, modeling and experimental evaluation of a compact piezoelectric XY platform for large travel range, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(4): 863–872 http://ieeexplore.ieee.org/document/8890720 110. Liang Wang, Yingxiang Liu*, Jie Deng, Xinqi Tian, Junkao Liu, A non-resonant sandwich type bidirectional stepping piezoelectric actuator driven by oblique two-dimensional trajectory: design, analysis and experiment evaluation, Mechanical Systems and Signal Processing, 2020, 135: 106424 http://www.sciencedirect.com/science/article/pii/S0888327019306454 109. Jie Deng, Yingxiang Liu*, Xinqi Tian, Shijing Zhang, A piezoelectric-actuated robot operating at running and swinging hybrid modes, Smart Materials and Structures, 2019, 28: 115010 http://iopscience.iop.org/article/10.1088/1361-665X/ab4363 108. Hengyu Li, Junkao Liu, Kai Li, Yingxiang Liu*, Piezoelectric micro-jet devices: a review, Sensors and Actuators: A. Physical, 2019, 297: 111552 http://www.sciencedirect.com/science/article/abs/pii/S0924424719304182 107. Liang Wang, Weishan Chen, Junkao Liu, Jie Deng, Yingxiang Liu*, A review of recent studies on non-resonant piezoelectric actuators, Mechanical Systems and Signal Processing, 2019, 133: 106254 http://www.sciencedirect.com/science/article/pii/S0888327019304698 106. He Li, Xinqi Tian, Zhihang Shen, Kai Li, Yingxiang Liu*, A low-speed linear stage based on vibration trajectory control of a bending hybrid piezoelectric ultrasonic motor, Mechanical Systems and Signal Processing, 2019, 132: 523–534 http://www.sciencedirect.com/science/article/pii/S0888327019304443 105. Jie Deng, Weishan Chen, Kai Li, Liang Wang, Yingxiang Liu*, A sandwich piezoelectric actuator with long stroke and nanometer resolution by the hybrid of two actuation modes, Sensors and Actuators: A. Physical, 2019, 296: 121–131 http://www.sciencedirect.com/science/article/pii/S0924424719306053 104. Jie Deng, Weishan Chen, Yun Wang, Shijing Zhang, Yingxiang Liu*, Modeling and experimental evaluations of a four-legged stepper rotary precision piezoelectric stage, Mechanical Systems and Signal Processing, 2019, 132: 153–167 http://www.sciencedirect.com/science/article/pii/S0888327019304091 103. Dongmei Xu, Yingxiang Liu*, Shengjun Shi, Dingwen Wang, Weishan Chen, Jie Deng, Developments of piezoelectric ultrasonic actuators operating under bending hybrid vibration modes, Mechanics of Advanced Materials and Structures, 2019, 26(5): 416–423 http://www.tandfonline.com/doi/abs/10.1080/15376494.2017.1400615 102. Xintian Tang#, Kai Li#, Yingxiang Liu*, Dong Zhou, Jianguo Zhao. A soft crawling robot driven by single twisted and coiled actuator, Sensors and Actuators: A. Physical, 2019, 291: 80–86 http://www.sciencedirect.com/science/article/pii/S0924424718316145 101. Liang Wang, Junkao Liu, Shuo Chen, Kai Li, Yingxiang Liu*. Design and fabrication of a high-speed linear piezoelectric actuator with nanometer resolution using a cantilever transducer, Smart Materials and Structures, 2019, 28: 055035 http://iopscience.iop.org/article/10.1088/1361-665X/ab1161 100. Xinqi Tian, Binrui Zhang, Yingxiang Liu*, Shuo Chen, Hongpeng Yu. A novel U-shaped stepping linear piezoelectric actuator with two driving feet and low motion coupling: design, modeling and experiments, Mechanical Systems and Signal Processing, 2019, 124: 679–695 http://www.sciencedirect.com/science/article/pii/S0888327019301025 99. Xintian Tang#, Kai Li#, Yingxiang Liu*, Dong Zhou, Jianguo Zhao. A general soft robot module driven by twisted and coiled actuators, Smart Materials and Structures, 2019, 28: 035019 http://iopscience.iop.org/article/10.1088/1361-665X/aaff2f 98. Jie Deng, Yingxiang Liu*, Weishan Chen, Hongpeng Yu. A XY transporting and nanopositioning piezoelectric robot operated by leg rowing mechanism, IEEE/ASME Transactions on Mechatronics, 2019, 24(1): 207–217 http://ieeexplore.ieee.org/document/8600365 2018 97. Xintian Tang, Kai Li, Weishan Chen, Dong Zhou, Shenghui Liu, Jianguo Zhao,Yingxiang Liu*. Temperature self-sensing and closed-loop position control of twisted and coiled actuator, Sensors and Actuators: A. Physical, 2019, 285: 319–328 http://www.sciencedirect.com/science/article/pii/S0924424718313268 96. Shijing Zhang, Junkao Liu, Jie Deng, Yingxiang Liu*, Development of a novel two-DOF pointing mechanism using a bending-bending hybrid piezoelectric actuator, IEEE Transactions on Industrial Electronics, 2019, 66(10): 7861–7872 http://ieeexplore.ieee.org/document/8556394 95. Liang Wang, Yingxiang Liu*, Kai Li, Shuo Chen, Xinqi Tian, Development of a resonant type piezoelectric stepping motor using longitudinal and bending hybrid bolt-clamped transducer, Sensors and Actuators: A. Physical, 2019, 285: 182–189 http://www.sciencedirect.com/science/article/pii/S0924424718311701 94. Yingxiang Liu*, Liang Wang, Jipeng Yan, Qi Su, Hongpeng Yu, Design and experiment evaluation of a rotatable and deployable sleeve mechanism using a two-DOF piezoelectric actuator, IEEE Access, 2018, 6: 63486–63495 http://ieeexplore.ieee.org/document/8502765 93. Yingxiang Liu*, Jie Deng, Qi Su. Review on multi-degree-of-freedom piezoelectric motion stage, IEEE Access, 2018, 6: 59986–60004 http://ieeexplore.ieee.org/document/8491284 92. Ben Pawlowski, Jiefeng Sun, Jing Xu, Yingxiang Liu, Jianguo Zhao*. Modeling of soft robots actuated by twisted-and-coiled actuators, IEEE/ASME Transactions on Mechatronics, 2019, 24(1): 5–15 http://ieeexplore.ieee.org/document/8477103/ 91. Jie Deng, Yingxiang Liu*, Junkao Liu, Dongmei Xu, Yun Wang. Development of a planar piezoelectric actuator using bending-bending hybrid transducers, IEEE Transactions on Industrial Electronics, 2019, 66(8): 6141–6149 http://ieeexplore.ieee.org/document/8488675 90. Dongmei Xu, Yingxiang Liu*, Junkao Liu, Liang Wang, A four-foot walking-type stepping piezoelectric actuator: driving principle, simulation and experimental evaluation, Smart Materials and Structures, 2018, 27: 115002 http://iopscience.iop.org/article/10.1088/1361-665X/aae007 89. Yingxiang Liu*, Dongmei Xu, Weishan Chen, Kai Li, Liang Wang, Design and Experimental Evaluation of a Stepper Piezoelectric Actuator Using Bending Transducers, IEEE Access, 2018, 6: 50518–50525 http://ieeexplore.ieee.org/document/8454718/ 88. Qi Su, Yingxiang Liu*, Liang Wang, Jie Deng, He Li, A three-dimensional piezoelectric nanopositioner using a sandwich transducer, Ceramics International, 2018, 44: S108–S111 http://www.sciencedirect.com/science/article/pii/S0272884218323058 87. Qiangqiang Shen, Yingxiang Liu*, Liang Wang, Junkao Liu, Kai Li. A long stroke linear stepping piezoelectric actuator using two longitudinal-bending hybrid transducers, Ceramics International, 2018, 44: S104–S107 http://www.sciencedirect.com/science/article/pii/S027288421832306X 86. Xinqi Tian, Yingxiang Liu*, Weishan Chen, Jie Deng, Junkao Liu. Development and experiment evaluation of an H-shape linear piezoelectric actuator operated in stepping mode, Ceramics International, 2018, 44: S246–S249 http://www.sciencedirect.com/science/article/pii/S0272884218321606 85. Kai Li, Junkao Liu, Rui Yang, Weishan Chen, Lu Zhang, Yingxiang Liu*. A trace redundant lubrication piezoelectric micro-jet for bearing system, IEEE/ASME Transactions on Mechatronics, 2018, 23(5): 2263–2272 http://ieeexplore.ieee.org/document/8424507/ 84. Jie Deng, Yingxiang Liu*, Kai Li, Qi Su, Hongpeng Yu. A novel planar piezoelectric actuator with nano-positioning ability operating in bending-bending hybrid modes, Ceramics International, 2018, 2018, 44: S164–S167 http://www.sciencedirect.com/science/article/pii/S0272884218321837 83. Xintian Tang, Kai Li, Yingxiang Liu*, Jianguo Zhao. Coiled conductive polymer fiber used in soft manipulator as sensor, IEEE Sensors Journal, 2018, 18(15): 6123–6129 http://ieeexplore.ieee.org/document/8382188/ 82. Yingxiang Liu*, Jipeng Yan, Liang Wang, Weishan Chen. A two-DOF ultrasonic motor using a longitudinal-bending hybrid sandwich transducer, IEEE Transactions on Industrial Electronics, 2019, 66(4): 3041–3050 http://ieeexplore.ieee.org/document/8392544/ 81. Yingxiang Liu*, Liang Wang, Zhizheng Gu, Qiquan Quan, Jie Deng. Development of a two-dimensional linear piezoelectric stepping platform using longitudinal-bending hybrid actuators, IEEE Transactions on Industrial Electronics, 2019, 66(4): 3030–3040 http://ieeexplore.ieee.org/document/8375125/ 80. Liang Wang, Junkao Liu, Yingxiang Liu*, Xinqi Tian, Jipeng Yan. A novel single-mode linear piezoelectric ultrasonic motor based on asymmetric structure, Ultrasonics, 2018, 89: 137–142 http://www.sciencedirect.com/science/article/pii/S0041624X17309368 79. Yingxiang Liu*, Yun Wang, Junkao Liu, Dongmei Xu, Kai Li, Xiaobiao Shan, Jie Deng. A four feet walking type rotary piezoelectric actuator with minute step motion, Sensors, 2018, 18(5): 1471 http://www.mdpi.com/1424-8220/18/5/1471 78. Weishan Chen, Yuyang Liu, Yingxiang Liu*, Xinqi Tian, Xiaobiao Shan, Liang Wang, Design and experimental evaluation of a novel stepping linear piezoelectric actuator, Sensors and Actuators: A. Physical, 2018, 276: 259–266 http://www.sciencedirect.com/science/article/pii/S0924424717319763 77. Xinda Qi, Weishan Chen, Yingxiang Liu*, Xintian Tang, Shengjun Shi. A novel well drill assisted with high-frequency vibration using the bending mode, Sensors, 2018, 18(4): 1167 http://www.mdpi.com/1424-8220/18/4/1167 76. Jie Deng, Yingxiang Liu*, Weishan Chen, Junkao Liu. Development and experiment evaluation of an inertial piezoelectric actuator using bending-bending hybrid modes, Sensors and Actuators: A. Physical, 2018, 275: 11–18 http://www.sciencedirect.com/science/article/pii/S0924424718300050 75. Junkao Liu, Yingxiang Liu*, Liangliang Zhao, Dongmei Xu, Weishan Chen, Jie Deng. Design and experiments of a single-foot linear piezoelectric actuator operated in stepping mode, IEEE Transactions on Industrial Electronics, 2018, 65(10): 8063–8071 http://ieeexplore.ieee.org/document/8270708/ 74. Shengjun Shi*, Zhibo Huang, Junyi Yang, Yingxiang Liu, Weishan Chen, Kenji Uchino, Development of a compact ring type MDOF piezoelectric ultrasonic motor for humanoid eyeball orientation system, Sensors and Actuators: A. Physical, 2018, 272: 1–10 http://www.sciencedirect.com/science/article/pii/S0924424717314723 73. Qiang Zhang, Hongjuan Chen, Yingxiang Liu, Wenzhi Wang, Hu Zhang*, Xiangyu Zhou, Dongliang Chen, Monan Wang, A Bending Hybrid Linear Piezoelectric Actuator Using Sectional Excitation, Sensors and Actuators: A. Physical, 2018, 271: 96–103 http://www.sciencedirect.com/science/article/pii/S0924424717316746 72. Dongmei Xu, Yingxiang Liu*, Shengjun Shi, Junkao Liu, Weishan Chen, Liang Wang. Development of a non-resonant piezoelectric motor with nanometer resolution driving ability, IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 444–451 http://ieeexplore.ieee.org/document/8249835/ 71. Xintian Tang, Yingxiang Liu*, Kai Li, Weishan Chen, Jianguo Zhao, Finite Element and Analytical Models for Twisted and Coiled Actuator, Materials Research Express, 2018, 5(1): 015701 http://iopscience.iop.org/article/10.1088/2053-1591/aa9f3d 70. Jipeng Yan, Yingxiang Liu*, Shengjun Shi, Weishan Chen. A three-DOF ultrasonic motor using four piezoelectric ceramic plates in bonded-type structure, Journal of Vibroengineering, 2018, 20(1): 358–367 http://www.jvejournals.com/Vibro/article/JVE-18523.html 69. Yingxiang Liu*, Shengjun Shi, Jipeng Yan, Weishan Chen, Dongmei Xu, A novel piezoelectric actuator with two operating modes, Journal of Intelligent Material Systems and Structures, 2018, 29(6): 1157–1164 http://journals.sagepub.com/doi/abs/10.1177/1045389X17730921 2017 68. Yingxiang Liu*, Weishan Chen, Dongdong Shi, Xinqi Tian, Shengjun Shi, Dongmei Xu. Development of a four feet driving type linear piezoelectric actuator using bolt-clamped transducers, IEEE Access, 2017, 5: 27162–27171 http://ieeexplore.ieee.org/document/8113464/ 67. Xiaohui Yang*, Yingxiang Liu*, Weishan Chen, Xuetao Zhao. New excitation method for sandwich transducer using bending composite vibrations: modeling, simulation, and experimental evaluation, IEEE Transactions on Industrial Electronics, 2018, 65(6): 4889–4896 http://ieeexplore.ieee.org/document/8113583/ 66. Yingxiang Liu*, Shengjun Shi, Chunhong Li, Weishan Chen, Liang Wang, Junkao Liu. Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet, Ultrasonics, 2018, 84: 81-86 http://www.sciencedirect.com/science/article/pii/S0041624X17301087 65. Yingxiang Liu*, Qiangqiang Shen, Shengjun Shi, Jie Deng, Weishan Chen, Liang Wang, Research on a novel exciting method for sandwich transducer operating in longitudinal-bending hybrid modes, Sensors, 2017, 17(7): 1510 http://www.mdpi.com/1424-8220/17/7/1510 64. Zhihang Shen, Yingxiang Liu*, Jianguo Zhao, Xintian Tang, Weishan Chen, Design and experiment of a small legged robot operated by the resonant vibrations of cantilever beams, IEEE Access, 2017, 5: 8451-8458 http://ieeexplore.ieee.org/abstract/document/7922555/ 63. Xintian Tang, Yingxiang Liu*, Shengjun Shi, Weishan Chen, Xinda Qi, Development of a novel ultrasonic drill using longitudinal-bending hybrid mode, IEEE Access, 2017, 5: 7362-7370 http://ieeexplore.ieee.org/abstract/document/7907288/ 62. Yingxiang Liu*, Shengjun Shi, Dingwen Wang, Weishan Chen, Dongmei Xu, Research on the thermal characteristics of bending hybrid piezoelectric actuators under different exciting methods, Ceramics International, 2017, 43: S15-S20 http://www.sciencedirect.com/science/article/pii/S0272884217310040 61. Dongmei Xu, Yingxiang Liu*, Junkao Liu, Xiaohui Yang, Weishan Chen, Developments of a piezoelectric actuator with nano-positioning ability operated in bending modes, Ceramics International, 2017,43: S21-S26 http://www.sciencedirect.com/science/article/pii/S0272884217310143 60. Shengjun Shi*,Huaiyin Xiong, Yingxiang Liu*, Weishan Chen, Junkao Liu, A ring-type multi-dof ultrasonic motor with four feet driving consistently, Ultrasonics, 2017,76: 234-244 http://www.sciencedirect.com/science/article/pii/S0041624X17300094 59. Qiang Zhang, Weishan Chen, Yingxiang Liu*, Junkao Liu, Qiang Jiang, A frog-shape linear piezoelectric actuator using first order longitudinal vibration mode, IEEE Transactions on Industrial Electronics, 2017, 64(3): 2188-2195 http://ieeexplore.ieee.org/abstract/document/7738446/ 2016 58. Yingxiang Liu*, Shengjun Shi, Chunhong Li, Weishan Chen, Junkao Liu, A novel standing wave linear piezoelectric actuator using the longitudinal-bending coupling mode, Sensors and Actuators: A. Physical, 2016, 251: 119-125 http://www.sciencedirect.com/science/article/pii/S0924424716306835 57. Yingxiang Liu*, Jipeng Yan, Dongmei Xu, Weishan Chen, Xiaohui Yang and Xinqi Tian, An I-shape Linear Piezoelectric Actuator Using Resonant Type Longitudinal Vibration Transducers, Mechatronics, 2016, 40: 87-95 http://www.sciencedirect.com/science/article/pii/S0957415816301052 56. Jipeng Yan, Yingxiang Liu*, Junkao Liu, Dongmei Xu, Weishan Chen, The design and experiment of a novel ultrasonic motor based on the combination of bending modes, Ultrasonics, 2016, 71: 205-210 http://www.sciencedirect.com/science/article/pii/S0041624X16301081 55. Sijia Shao, Shengjun Shi*, Weishan Chen, Junkao Liu, Yingxiang Liu, Research on a linear piezoelectric actuator using t-shape transducer to realize high mechanical output, Applied Sciences, 2016, 6(4): 103 http://www.mdpi.com/2076-3417/6/4/103/htm 54. Dongmei Xu, Yingxiang Liu*, Junkao Liu, Shengjun Shi, and Weishan Chen. Motion planning of a stepping-wriggle type piezoelectric actuator operating in bending modes. IEEE Access, 2016, 4: 2371-2378 http://ieeexplore.ieee.org/abstract/document/7471413/ 53. 刘英想*,闫纪朋,徐冬梅,杨小辉,陈维山. 弯振复合型单足压电驱动器设计与研究. 西安电子科技大学学报(自然科学版), 2017, 44(1): 141-146 52. Weishan Chen, Yingxiang Liu*, Yuexin Gao, Jipeng Yan, Junkao Liu. A piezoelectric motor operated under the superposition of the second and third bending modes of a sandwich transducer. Ferroelectrics, 2016, 504: 87-95 http://www.tandfonline.com/doi/abs/10.1080/00150193.2016.1239483 51. Dongmei Xu, Yingxiang Liu*, Junkao Liu. and Weishan Chen. A bonded type ultrasonic motor using the bending of a crossbeam. IEEE Access, 2016, 4: 1109-1116 http://ieeexplore.ieee.org/abstract/document/7434559/ 50. Xiaohui Yang, Yingxiang Liu*, Weishan Chen, and Junkao Liu. Sandwich type multi-degree-of-freedom ultrasonic motor with hybrid excitation, IEEE Access, 2016, 4: 905-913 http://ieeexplore.ieee.org/abstract/document/7422657/ 49. Yingxiang Liu*, Xiaohui Yang, Weishan Chen, and Dongmei Xu. A bonded-type piezoelectric actuator using the first and second bending vibration modes, IEEE Transactions on Industrial Electronics, 2016, 63(3): 1676-1683 http://ieeexplore.ieee.org/abstract/document/7300439/ 48. Yingxiang Liu*, Xiaohui Yang, Dongmei Xu, and Weishan Chen. Improvement and Miniaturization of a T-shaped Linear Piezoelectric Actuator with Single Foot, Ferroelectrics, 2016, 493(1): 1-11 http://www.tandfonline.com/doi/abs/10.1080/00150193.2016.1123019 2015 47. Yingxiang Liu*, Dongmei Xu, Xiaohui Yang, and Weishan Chen, Miniaturized piezoelectric actuator operating in bending hybrid modes, Sensors and Actuators: A. Physical, 2015, 2015, 235: 158-164 http://www.sciencedirect.com/science/article/pii/S0924424715301631 46. Xiaohui Yang, Yingxiang Liu*, Weishan Chen, and Junkao Liu. A cylindrical traveling wave ultrasonic motor using bonded-type composite beam, Ultrasonics, 2016, 65(2): 277-281 http://www.sciencedirect.com/science/article/pii/S0041624X15002486 45. Yingxiang Liu*, Dongmei Xu, Zhaoyang Yu, Jipeng Yan, Xiaohui Yang, and Weishan Chen. A novel rotary piezoelectric motor using first bending hybrid transducers, Applied Sciences, 2015, 5(3): 472-484 http://www.mdpi.com/2076-3417/5/3/472/htm 44. Yingxiang Liu*, Weishan Chen, Xiaohui Yang, and Junkao Liu. A T-Shape Linear Piezoelectric Motor with Single Foot. Ultrasonics, 2015, 56(2): 551-556 http://www.sciencedirect.com/science/article/pii/S0041624X14002959 43. Yingxiang Liu*, Weishan Chen, Dongmei Xu, Peilian Feng, and Junkao Liu. Improvement of a rectangle-shape linear piezoelectric motor with four driving feet. Ceramics International, 2015, 41: S594-S601 http://www.sciencedirect.com/science/article/pii/S027288421500663X 42. Xiaohui Yang, Yingxiang Liu*, Weishan Chen, Junkao Liu. Miniaturization of a longitudinal-bending hybrid linear ultrasonic motor. Ceramics International, 2015, 41: S607-S611 http://www.sciencedirect.com/science/article/pii/S0272884215006641 2014 41. Yingxiang Liu*, Weishan Chen, Peilian Feng, and Junkao Liu. Miniaturization of a U-Shape Linear Piezoelectric Motor with Double Feet. Sensors and Actuators: A. Physical, 2014, 214(1): 95-100 http://www.sciencedirect.com/science/article/pii/S0924424714001873 40. Weishan Chen, Xiaohui Yang, Yingxiang Liu*, Junkao Liu. High order longitudinal and bending hybrid ultrasonic motor with new excitation. Materials Research Innovations , 2014, 18(S4): 554-558 http://www.tandfonline.com/doi/abs/10.1179/1432891714Z.000000000840 39. Yingxiang Liu*, Junkao Liu, Weishan Chen, and Peilian Feng. A Square-Type Rotary Ultrasonic Motor Using Longitudinal Modes. Journal of Electroceramics, 2014, 33(1-2): 69-74 http://link.springer.com/article/10.1007/s10832-014-9922-4 38. Yingxiang Liu*, Weishan Chen, Xiaohui Yang, and Junkao Liu. A Rotary Piezoelectric Actuator Using the Third and Fourth Bending Vibration Modes. IEEE Transactions on Industrial Electronics, 2014, 61(8): 4366-4373 http://ieeexplore.ieee.org/abstract/document/6553266/ 37. Weishan Chen, Yingxiang Liu*, Xiaohui Yang, and Junkao Liu. Ring Type Traveling Wave Ultrasonic Motor Using Radial Bending Mode. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(1): 197-202 http://ieeexplore.ieee.org/abstract/document/6689788/ 36. Yingxiang Liu*, Weishan Chen, Xiaohui Yang, and Junkao Liu. A Bonded-Type Linear Piezoelectric Motor with Four Feet, Ferroelectrics, 2014, 459: 91-98 http://www.tandfonline.com/doi/abs/10.1080/00150193.2013.838089 2013 35. Yingxiang Liu*, Weishan Chen, Peilian Feng and Junkao Liu. A Rotary Piezoelectric Motor Using Bending Vibrators. Sensors and Actuators: A.Physical, 2013, 196(1): 48-54 http://www.sciencedirect.com/science/article/pii/S0924424713001520 34. Yingxiang Liu*, Weishan Chen, Junkao Liu and Shengjun Shi. A Rectangle-type Linear Ultrasonic Motor Using Longitudinal Vibration Transducers with Four Driving Feet. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60(4): 777-785 http://ieeexplore.ieee.org/abstract/document/6489812/ 33. Yingxiang Liu*, Weishan Chen, Junkao Liu and Xiaohui Yang. A High-Power Linear Ultrasonic Motor Using Bending Vibration Transducer. IEEE Transactions on Industrial Electronics, 2013, 60(11): 5160-5166 http://ieeexplore.ieee.org/abstract/document/6380612/ 32. Yingxiang Liu*, Xiaohui Yang, Weishan Chen, and Yu Yao. A High Power Linear Ultrasonic Motor Using a Bending Bolt-Clamped Transducer, Ferroelectrics, 2013, 445: 39-50 http://www.tandfonline.com/doi/abs/10.1080/00150193.2013.814016 31. Yingxiang Liu*, Weishan Chen, Peilian Feng, and Junkao Liu. A linear piezoelectric actuator using the first-order bending modes, Ceramics International, 2013, 39(S1): S681-S684 http://www.sciencedirect.com/science/article/pii/S0272884212011248 30. Xiaohui Yang*, Yingxiang Liu, Weishan Chen, Junkao Liu. Longitudinal and bending hybrid linear ultrasonic motor using bending PZT elements, Ceramics International, 2013, 39(S1): S691-S694 http://www.sciencedirec.com/science/article/pii/S0272884212011261 29. 刘英想*, 陈维山, 冯培连, 刘军考. 弯振复合型超声驱动器振动特性研究. 振动与冲击, 2013, 32(1): 25-29 2012 28. Yingxiang Liu*, Xiaohui Yang, Weishan Chen, and Junkao Liu. A Rotary Piezoelectric Actuator Using Longitudinal and Bending Hybrid Transducer. AIP Advances, 2012, 2(4): 042136 http://aip.scitation.org/doi/abs/10.1063/1.4766676 27. Yingxiang Liu*, Weishan Chen, Peilian Feng and Junkao Liu. A Square-type Rotary Ultrasonic Motor with Four Driving Feet, Sensors and Actuators: A.Physical, 2012, 180: 113-119 http://www.sciencedirect.com/science/article/pii/S092442471200249X 26. Yingxiang Liu*, Junkao Liu, Weishan Chen and Shengjun Shi. A U-shaped Linear Ultrasonic Motor Using Longitudinal Vibration Transducers with Double Feet, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(5): 981-989 http://ieeexplore.ieee.org/abstract/document/6202422/ 25. Yingxiang Liu*, Junkao Liu, Weishan Chen and Xiaohui Yang. A Rotary Ultrasonic Motor Using Radial Bending Mode of Ring with Nested PZT Excitation. Journal of Zhejiang University-SCIENCE A, 2012, 13(3): 189-196 http://link.springer.com/article/10.1631%2Fjzus.A1100225?LI=true 24. Yingxiang Liu*, Weishan Chen, Junkao Liu and Shengjun Shi. Vibration Characteristics of a Traveling Wave Piezoelectric Stator Using a Circumferential Composite Transducer, Advanced Science Letters, 2012, 17: 167-171 http://www.ingentaconnect.com/content/asp/asl/2012/00000017/00000001/art00024 23. Yingxiang Liu*, Weishan Chen, Junkao Liu and Shengjun Shi. A Linear Ultrasonic Motor Using Longitudinal and Bending Hybrid Transducer with Double Driving Feet, Advanced Science Letters, 2012, 16: 84-89 http://www.ingentaconnect.com/content/asp/asl/2012/00000016/00000001/art00015 22. 刘英想*, 姚郁, 陈维山,刘军考. 纵振复合双足直线超声电机. 西安交通大学学报, 2012, 46(8): 111-115 21. Yingxiang Liu*, Peilian Feng, Weishan Chen and Junkao Liu. Study on the Wave Deformation of a Traveling Wave Piezoelectric Stator Using Composite Transducer, Advanced Materials Research, 2012, 516-517 : 1647-1650 http://www.scientific.net/AMR.516-517.1647 20. 刘英想*, 陈维山, 杨小辉, 刘军考. 纵振换能器式圆筒型超声电机振动特性的研究. 振动工程学报, 2012, 25(1): 1-5 2011 19. Yingxiang Liu*, Junkao Liu and Weishan Chen. A Cylindrical Traveling Wave Ultrasonic Motor Using Circumferential Composite Transducer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(11): 2397-2404 http://ieeexplore.ieee.org/abstract/document/6071058/ 18. Yingxiang Liu*, Weishan Chen, Junkao Liu and Shengjun Shi. A Cylindrical Standing Wave Ultrasonic Motor Using Bending Vibration Transducer. Ultrasonics, 2011, 51(5):527-531 http://www.sciencedirect.com/science/article/pii/S0041624X10001939 17. Yingxiang Liu*, Junkao Liu, Weishan Chen and Shengjun Shi. A Ring Type Standing Wave Ultrasonic Motor Using Cantilever Type Longitudinal Transducers. Journal of Harbin Institute of Technology (New Series), 2011, 18(1): 52-56 16. Yingxiang Liu*, Junkao Liu, Weishan Chen and Shengjun Shi. Actuating Mechanism and Design of a T-type Linear Ultrasonic Motor. Journal of Harbin Institute of Technology (New Series), 2011, 18(2): 43-46 15. Weishan Chen, Yingxiang Liu*, Junkao Liu and Shengjun Shi. Working Principle and Design of a Double Cylinders Type Traveling Wave Ultrasonic Motor Using Composite Transducer. Journal of Harbin Institute of Technology (New Series), 2011, 18(2): 28-32 2010 14. Yingxiang Liu*, Weishan Chen, Junkao Liu and Shengjun Shi. Actuating Mechanism and Design of a Cylindrical Traveling Wave Ultrasonic Motor Using Cantilever Type Composite Transducer. PLoS ONE, 2010, 5(4): e10020 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010020 13. Yingxiang Liu*, Weishan Chen, Junkao Liu and Shengjun Shi. A High-Power Linear Ultrasonic Motor Using Longitudinal Vibration Transducers with Single Foot. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(8): 1860-1867 http://ieeexplore.ieee.org/abstract/document/5529475/ 12. Yingxiang Liu*, Weishan Chen, Junkao Liu and Shengjun Shi. A Rotary Ultrasonic Motor Using Bending Vibration Transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(10): 2360-2364 http://ieeexplore.ieee.org/abstract/document/5587418/ 11. Yingxiang Liu*, Weishan Chen, Junkao Liu and Shengjun Shi. A Cylindrical Traveling Wave Ultrasonic Motor Using Longitudinal and Bending Composite Transducer. Sensors and Actuators: A.Physical, 2010, 161(1-2): 158-163 http://www.sciencedirect.com/science/article/pii/S0924424710002621 10. Yingxiang Liu*, Junkao Liu, Weishan Chen and Shengjun Shi. A Cylindrical Traveling Wave Ultrasonic Motor Using Longitudinal Vibration Transducers. Ferroelectrics, 2010, 409: 117-127 http://www.tandfonline.com/doi/abs/10.1080/00150193.2010.485968 9. Weishan Chen, Yingxiang Liu*, Junkao Liu and Shengjun Shi. A Linear Ultrasonic Motor Using Bending Vibration Transducer with Double Driving Feet. Ferroelectrics, 2010, 400: 221-230 http://www.tandfonline.com/doi/abs/10.1080/00150193.2010.505544 8. Weishan Chen, Shengjun Shi, Yingxiang Liu* and Pei Li. A New Traveling Wave Ultrasonic Motor Using Thick Ring Stator with Nested PZT Excitation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(5): 1160-1168 http://ieeexplore.ieee.org/abstract/document/5456265/ 7.Shengjun Shi*, Junkao Liu, Weishan Chen, Yingxiang Liu. A Novel L-B Hybrid Langevin Transducer Type Linear Ultrasonic Motor With Modal Coupling Reducing Configuration. Ferroelectrics, 2010, 408: 71-77 http://www.tandfonline.com/doi/abs/10.1080/00150193.2010.485028 6. Yingxiang Liu*, Junkao Liu, Weishan Chen and Shengjun Shi. Design and Analysis of a Cylindrical Traveling Wave Ultrasonic Motor Using Orthogonal Longitudinal Composite Transducer. Key Engineering Materials, 2010, 419-420: 261-265 2009 5. 刘英想*, 刘军考, 陈维山, 石胜君. 纵振夹心换能器式圆筒型行波超声电机. 中国电机工程学报, 2009, 29(18): 83-88 4. 刘英想*, 刘军考, 陈维山, 石胜君. 纵弯复合换能器式圆环型行波超声电机的工作原理与设计. 仪器仪表学报增刊, 2009, 30(6): 200-204 3. Yingxiang Liu*, Junkao Liu, Weishan Chen and Shengjun Shi. Design and Analysis of a Ring Type Traveling Wave Ultrasonic Motor Using Cantilever Type Composite Transducer. Advanced Materials Research, 2009, 79-82: 1411-1414 2. Yingxiang Liu*, Junkao Liu, Weishan Chen and Shengjun Shi. Working Principle and Design of a Cylindrical Standing Wave Ultrasonic Motor Using Cantilever Type Bending Transducer. Key Engineering Materials, 2010, 434-435: 771-774 2008 1. Yingxiang Liu*, Weishan Chen and Junkao Liu. Research on the Swing of the Body of Two-Joint Robot Fish. Journal of Bionic Engineering, 2008, 5(2): 159-165 http://www.sciencedirect.com/science/article/pii/S1672652908600207 代表性会议论文(Representative Conference Papers) 名称 2017 21. Hongpeng Yu, Yingxiang Liu*, Xinqi Tian, Shengjun Shi, Design and experimental evaluation of a linear piezoelectric ultrasonic motor using longitudinal transducers, 2017 IEEE International Ultrasonics Symposium (IUS), 2017, 1–4 2015 20. Yingxiang Liu*, Dongmei Xu, Ji-peng Yan, Xiu-hua Ni, Wei-shan Chen. Design of a bending vibrations hybrid type ultrasonic motor with a bonded-type structure. The 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2015), 2015, 50-54 19. Junkao Liu, Dongmei Xu, Yingxiang Liu*, Xiuhua Ni, Weishan Chen. Design of a cross-shaped piezoelectric motor with single driving foot. The 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2015), 2015, 40-44 18. Jipeng Yan, Yingxiang Liu*, Shengjun Shi, Xiuhua Ni, Huaiyin Xiong. Working principle and design of a linear ultrasonic motor with ring-type stator. The 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2015), 2015, 35-39 17. Yingxiang Liu*, Chunhong Li, Weishan Chen, Xiuhua Ni, Junkao Liu. Analysis of a novel longitudinal-bending hybrid ultrasonic motor using vibration coupling. The 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2015), 2015, 45-49 16. Dongdong Shi, Yingxiang Liu*, Weishan Chen, Junkao Liu. Study on the working principle and exciting method for a step peristalsis piezoelectric actuator. The 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2015), 2015, 237-241 15. Dingwen Wang, Yingxiang Liu*, Weishan Chen, and Junkao Liu. Study on the exciting method for piezoelectric actuator using bending hybrid modes. The 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2015), 2015, 242-246 14. Yingxiang Liu*, Dongmei Xu, Weishan Chen, and Junkao Liu. Operating Principle and Vibration Characteristic of an I-shaped Ultrasonic Motor. 2015 Joint IEEE International Symposium on the Applications of Ferroelectric, International Symposium on Integrated Functionalities and Piezoelectric Force Microscopy Workshop (ISAF/ISIF/PFM), 2015: 9-12 13. Dongmei Xu,Yingxiang Liu*, Junkao Liu, and Weishan Chen. A Crossbeam Linear Ultrasonic Motor Using Bending Vibrations. 2015 Joint IEEE International Symposium on the Applications of Ferroelectric, International Symposium on Integrated Functionalities and Piezoelectric Force Microscopy Workshop (ISAF/ISIF/PFM), 2015: 13-16 12. Zhaoyang Yu, Yingxiang Liu*, Dongmei Xu, and Weishan Chen. Vibration Characteristic Analysis of a Piezoelectric Transducer Using First Bending Vibration Modes. 2015 Joint IEEE International Symposium on the Applications of Ferroelectric, International Symposium on Integrated Functionalities and Piezoelectric Force Microscopy Workshop (ISAF/ISIF/PFM), 2015: 32-35 2012 11. Yingxiang Liu, Weishan Chen, Di Lu, Xiaohui Yang and Yu Yao. Study on the vibration coupling of ultrasonic motor using longitudinal transducers, 2012 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2012: 29-32 10. Xiaohui Yang, Weishan Chen, Yingxiang Liu and Junkao Liu. Study on a new linear ultrasonic motor with bending PZT elements, 2012 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2012: 37-40 9. Yingxiang Liu, Weishan Chen, Peilian Feng and Junkao Liu. Study on the Vibration Couplings of a Traveling Wave Piezoelectric Stator Excited by a Longitudinal and Bending Hybrid Transducer, IEEE 7th International Power Electronics and Motion Control Conference-ECCE Asia, 2012: 69-72 8. Xiaohui Yang, Yingxiang Liu, Weishan Chen and Junkao Liu. Study on the exciting mode of ultrasonic motor using bending vibration transducer, IEEE 7th International Power Electronics and Motion Control Conference-ECCE Asia, 2012: 59-63 2009 7. Yingxiang Liu, Junkao Liu, Weishan Chen and Shengjun Shi. Design and Analysis of a Double Rings Type Ultrasonic Motor Using Longitudinal Transducers. 2009 IEEE International Conference on Mechatronics and Automation, 2009: 181-185 . 6. Yingxiang Liu, Junkao Liu, Weishan Chen and Shengjun Shi. A Ring Type Standing Wave Ultrasonic Motor Using Bending Transducer. IEEE The 16th International Conference on Industrial Engineering and Engineering Management, 2009: 2072-2075. 5. Yingxiang Liu, Junkao Liu, Weishan Chen and Shengjun Shi. Working Principle and Design of a Linear Ultrasonic Motor with Rectangle-type Stator. The 18th IEEE International Symposium on Applications of Ferroelectrics, 2009: 399-402. 4. Shengjun Shi, Junkao Liu, Weishan Chen, and Yingxiang Liu. Development of a 2-DOF planar ultrasonic motor using longitudinal-bending hybrid transducer. 18th IEEE International Symposium on Applications of Ferroelectrics, 2009: 341-345. 2008 3. Yingxiang Liu, Weishan Chen, Junkao Liu and Shengjun Shi. Design and Analysis of a Cylindrical Standing Wave Ultrasonic Motor Using Cantilever and Sandwich Type Transducer. The Third Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, 2008: 246-251 2. 陈维山, 刘英想, 刘军考,石胜君. 弯振夹心换能器式圆筒型行波超声电机的设计与分析. 第三届全国压电和声波理论及器件技术研讨会, 2008: 240-245 1. Shengjun Shi, Weishan Chen, Yingxiang Liu, Junkao Liu, Tao Xie. Design and fabrication of a linear ultrasonic motor using push-pull type L-B hybrid langevin transducer with single foot. 2008 IEEE International Ultrasonics Symposium, 2008: 157-160. Google Scholar--Yingxiang Liu (刘英想) 名称 http://scholar.google.com.hk/citations?user=vrkq3pYAAAAJ&hl=zh-CN http://scholar.google.com/citations?user=vrkq3pYAAAAJ&hl=en&oi=ao 授权专利(Granted Patents) 名称 2022 123. 刘英想,孙建华,李锴,邓杰,陈维山,刘军考. 一种交叉结构的多自由度水下压电机器人,专利号:ZL202111018533.9(申请日期:2021.9.1)(授权日期:2022.10.28) 122.李锴,刘英想,陈维山,刘军考. 一种基于压电微喷的热熔金属微液滴直接按需打印机构,专利号:ZL202010515663.2(申请日期:2020.6.9)(授权日期:2022.8.26) 121. 邓杰,刘英想,陈维山,刘军考,李锴. 一种基于弯振复合型压电驱动器的两自由度运动平台,专利号:ZL202110149824.5(申请日期:2021.2.3)(授权日期:2022.3.22) 120. 邓杰,刘英想,陈维山,刘军考,李锴. 一种宽速度范围两自由度大尺度压电平台,专利号:ZL202110149820.7(申请日期:2021.2.3)(授权日期:2022.3.1) 119. 邓杰,刘英想,陈维山,刘军考,李锴.一种小型多体节压电机器人及其激励方法,专利号:ZL202110091219.7(申请日期:2021.1.22)(授权日期:2022.3.1) 2021 118. 刘英想,李恒禹,刘军考,陈维山. 一种采用压电振子的内圆柱面机器人及其激励方法,专利号:ZL201910280498.4(申请日期:2019.4.9)(授权日期:2021.8.17) 117. 刘英想,李恒禹,陈维山,刘军考,李锴. 一种用于表面微小结构成型的两自由度精密操控机器人及其激励方法,专利号:ZL201910280507.X(申请日期:2019.4.9)(授权日期:2021.7.20) 116. 李锴,刘军考,陈维山,刘英想,李恒禹,王润举. 一种应用于高粘度流体喷射的阀门可调式压电微喷机构,专利号: ZL201910402647.X(申请日期:2019.5.15)(授权日期:2021.6.15) 115. 刘军考,李恒禹,刘英想,陈维山,李锴. 一种结构表面微小结构成型工艺,专利号:ZL201910280496.5(申请日期:2019.4.9)(授权日期:2021.3.30) 114. 陈维山,李恒禹,刘英想,刘军考,李锴. 一种面向微小结构件的精密制造工艺,专利号:ZL201910280996.9(申请日期:2019.4.9)(授权日期:2021.3.30) 113. 刘英想, 唐心田, 陈维山, 刘军考. 一种柔性驱动型双向旋转机器人关节, 专利号: ZL201810144540.5(申请日期:2018.2.12)(授权日期:2021.3.30) 112. 刘英想,张仕静,邓杰,刘军考,陈维山. 一种可操纵多种相异结构动子的四指压电机械手及其激励方法,专利号:ZL202010065303.7(申请日期:2020.1.20)(授权日期:2021.3.12) 111. 刘英想,张仕静,邓杰,刘军考,陈维山. 一种单自由度压电转台及其激励方法,专利号:ZL202010067202.3(申请日期:2020.1.21)(授权日期:2021.2.19) 110. 李锴,刘军考,陈维山,刘英想,李恒禹,王润举. 一种基于无阀压电微泵的轴承主动微冗余润滑机构,专利号: ZL201910451103.2(申请日期:2019.5.28)(授权日期:2021.1.5) 2020 109. 刘英想,李恒禹,刘军考,陈维山,李锴. 一种面向表面微小结构成型的三自由度精密操作装置及其激励方法,申请号:201910280495.0(申请日期:2019.4.9)(授权日期:2020.12.11) 108. 李锴,陈维山,刘军考,刘英想,李旺鑫,李恒禹. 一种基于径向压电振动致动的轴承主动微冗余润滑机构,专利号: ZL201910452032.8(申请日期:2019.5.28)(授权日期:2020.9.11) 107. 刘英想, 唐心田, 刘军考, 李凯. 一种有自传感功能的人工肌肉, 专利号: ZL201711394840.0(申请日期:2017.12.21)(授权日期:2020.9.4) 106. 刘英想,于洪鹏,陈维山,张仕静. 一种超精密三轴旋转压电调姿机构及其激励方法,专利号:ZL 201910280900.9(申请日期:2019.4.9)(授权日期:2020.9.4) 105. 刘英想,于洪鹏,陈维山,刘军考. 一种压电驱动的超精密三自由度平面运动平台及其激励方法,专利号:ZL201910280440.X(申请日期:2019.4.9)(授权日期:2020.8.7) 104. 刘英想,于洪鹏,陈维山,刘军考. 一种超精密五自由度压电定位调姿机构及其激励方法,专利号:ZL201910280525.8(申请日期:2019.4.9)(授权日期:2020.7.14) 103. 李锴,陈维山,刘军考,刘英想,李恒禹,王润举. 一种可喷射大粘度流体的悬臂梁式压电微喷机构,专利号: ZL201910418914.2(申请日期:2019.5.20)(授权日期:2020.7.14) 102. 刘英想,李恒禹,陈维山,刘军考,李锴. 一种采用压电换能器激励的多腔体双向压电泵及其泵送方法,专利号:ZL201910280999.2(申请日期:2019.4.9)(授权日期:2020.6.23) 101. 刘英想,李凯,唐心田,陈维山,刘军考. 一种基于人工肌肉的柔性管道爬行机器人, 专利号: ZL201711241944.8(申请日期:2017.12.01)(授权日期:2020.5.12) 100. 刘英想,于洪鹏,陈维山,刘军考,邓杰. 一种超精密三自由度直线压电定位平台及其激励方法,专利号:ZL201910280460.7(申请日期:2019.4.9)(授权日期:2020.5.12) 99. 刘英想,于洪鹏,刘军考,邓杰,田鑫琦. 一种两自由度超精密压电驱动平台及其激励方法,专利号:ZL201910280485.7(申请日期:2019.4.9)(授权日期:2020.5.12) 98. 刘英想,于洪鹏,陈维山,王良. 一种压电驱动的超精密运动六足机器人及其激励方法,专利号:ZL 201910280499.9(申请日期:2019.4.9)(授权日期:2020.4.24) 97. 刘英想, 于洪鹏, 陈维山,张仕静,王良. 一种两自由度超精密微细物体操作器及其激励方法,专利号:ZL 201910280940.3(申请日期:2019.4.9)(授权日期:2020.4.24) 96. 李锴,陈维山,刘军考,刘英想,李旺鑫,李恒禹. 一种应用于压电微喷机构的恒压背压系统,专利号: ZL201910440012.9(申请日期:2019.5.24)(授权日期:2020.4.24) 95. 刘英想,于洪鹏,陈维山,刘军考. 压电驱动的超精密四自由度定位调姿机构及其激励方法,专利号:ZL201910280424.0(申请日期:2019.4.9)(授权日期:2020.3.6) 94. 刘英想,于洪鹏,陈维山,刘军考. 压电驱动的超精密进给调姿装置及其激励方法,专利号:ZL201910280438.2(申请日期:2019.4.9)(授权日期:2020.1.24) 93. 刘英想,于洪鹏,刘军考,田鑫琦. 一种超精密四自由度压电载物台及其激励方法,专利号: ZL201910280899.X(申请日期:2019.4.9)(授权日期:2020.1.24) 92. 刘英想,于洪鹏,刘军考,田鑫琦,王良. 一种三自由度压电驱动微纳操控机械臂及其激励方法,专利号:ZL201910280459.4(申请日期:2019.4.9)(授权日期:2020.1.24) 91. 刘英想, 唐心田, 陈维山, 刘军考. 一种电磁力驱动的人工肌肉, 申请号:专利号: ZL201711394823.7(申请日期:2017.12.21)(授权日期:2020.1.24) 90. 刘英想,于洪鹏,陈维山,刘军考. 超精密五自由度压电运动平台及其激励方法,专利号:ZL201910280420.2(申请日期:2019.4.9)(授权日期:2020.1.7) 89. 刘英想,于洪鹏,陈维山,苏琪. 一种超精密六自由度压电运动平台及其激励方法,专利号:ZL201910280548.9(申请日期:2019.4.9)(授权日期:2020.1.7) 2019 88. 刘英想, 唐心田, 陈维山, 刘军考. 一种变刚度并联人工肌肉, 专利号: ZL201711392661.3(申请日期:2017.12.21)(授权日期:2019.11.19) 87. 刘英想, 于洪鹏, 陈维山, 刘军考. 采用剪切工作模式的扭转型精密压电驱动器及其制作方法, 专利号:ZL 201810394727.0(申请日期:2018.4.27)(授权日期:2019.11.08) 86. 刘英想, 邓杰, 陈维山, 刘军考. 一种两自由度压电驱动装置及其激励方法, 专利号: ZL201810349282.4(申请日期:2018.4.18)(授权日期:2019.11.08) 85. 刘英想, 田鑫琦, 刘军考, 陈维山. 一种基于压电振子的管道机器人及其激励方法, 专利号: ZL201810455400.X(授权日期:2019.11.05) 84. 刘英想, 王良, 陈维山, 石胜君, 刘军考. 一种多层式旋转型压电微位移驱动器, 专利号: ZL201810148211.8(授权日期:2019.09.10) 83. 石胜君,黄郅博,张云赫,刘英想,陈维山,刘军考. 三自由度球型定子超声电机定子基体及其激励方法. 专利号: ZL 201810326358.1(授权日期:2019.06.11) 82. 刘英想,王良,石胜君,陈维山,冯培连. 纵-弯复合蠕动式精密压电驱动器及其激励方法. 专利号: ZL201710245051.4(授权日期:2019.04.12) 81. 刘英想,王良,石胜君,陈维山,冯培连. 叠层式弯曲型压电陶瓷驱动器. 专利号: ZL201710245054.8(授权日期:2019.03.29) 80. 石胜君,黄郅博,刘英想,刘军考,陈维山. 三自由度球形转子超声电机定子基体及其激励方法. 专利号: ZL201711009852.7(授权日期:2019.03.29) 79. 石胜君,熊怀银,陈维山,刘英想,刘军考. 三自由度球形转子超声电机定子基体. 专利号: ZL201710034624.9(授权日期:2019.02.01) 78. 刘英想,邓杰,陈维山,刘军考,王良,冯培连. 一种钹型两自由度压电驱动器及采用该驱动器实现两自由度运动的激励方法,专利号: ZL201710475306.6(授权日期:2019.01.08) 2018 77. 刘英想,邓杰,陈维山,刘军考,王良,冯培连. 弯曲压电振子的两自由度压电驱动器及采用该驱动器实现的两自由度运动的激励方法,专利号: ZL201710475992.7(授权日期:2018.11.02) 76. 刘英想,田鑫琦,石胜君,陈维山,冯培连. U型精密直线压电驱动器及其激励方法. 专利号: ZL201710245066.0(授权日期:2018.11.02) 75. 刘英想,邓杰,石胜君,陈维山,冯培连. 六自由度压电驱动装置及其激励方法. 专利号: ZL201710245468.0(授权日期:2018.09.11) 74. 刘英想,刘军考,冯培连,陈维山. 采用压电驱动的两自由度直线运动平台. 专利号: ZL201610013001.9(授权日期:2018.07.06) 73. 刘英想,闫纪朋,陈维山,刘军考,冯培连. 多足蠕动驱动型套筒折展机构. 专利号: ZL201610012893.0(授权日期:2018.03.16) 2017 72. 刘英想,闫纪朋,刘军考,陈维山,冯培连. 纵弯复合单足两自由度超声电机振子. 专利号: ZL201610013002.3(授权日期:2017.11.16) 71. 刘英想,陈维山,刘军考,石胜君,冯培连. 分区激励式纵弯复合型超声电机振子. 专利号: ZL201610012939.9(授权日期:2017.10.03) 70. 刘英想,陈维山,刘军考,冯培连,石胜君. 纵弯陶瓷复位型超声电机振子. 专利号: ZL201610012989.7(授权日期:2017.10.03) 69. 刘英想,冯培连,石胜君,陈维山,刘军考. 一种驻波驱动型爬行机器人. 专利号: ZL201510255976.8(授权日期:2017.08.25) 68. 陈维山,张强,刘英想,刘军考,颜春林. 蛙型一阶纵振直线超声电机. 专利号: ZL201610221525.7(授权日期:2017.08.25) 67. 刘英想,刘军考,陈维山,冯培连. 蠕动驱动式两自由度套筒折展机构. 专利号: ZL201610012937.X(授权日期:2017.07.28) 66. 刘军考,赵亮亮,刘英想,陈维山,冯培连. 基于压电马达驱动的定心式锁紧机构. 专利号: ZL201610012881.8(授权日期:2017.07.28) 65. 刘英想,刘军考,闫纪朋,冯培连,陈维山. 采用单一压电振子的两自由度套筒展开机构. 专利号: ZL201610012891.1(授权日期:2017.06.23) 64. 刘英想,史东东,陈维山,刘军考. 一种采用超声波振子驱动的云台. 专利号: ZL201510428000.6 (授权日期:2017.06.20) 63. 刘英想,陈维山,刘军考,冯培连. 一种抑制转动轴系振动的方法. 专利号: ZL201510423452.5(授权日期:2017.06.20) 62. 刘英想,徐冬梅,刘军考,陈维山,冯培连. 基于多压电振子弯曲运动的步进蠕动型驱动激励方法. 专利号: ZL201610052537.1(授权日期:2017.06.13) 61. 刘英想,王鼎汶,陈维山,刘军考. 基于多压电振子步进蠕动模式驱动的空间展开机构. 专利号: ZL201510428081.X(授权日期:2017.04.12) 60. 刘英想,徐冬梅,陈维山,冯培连,刘军考. 仿生爬行多足直线压电驱动器. 专利号: ZL201510428085.8(授权日期:2017.03.01) 59. 刘英想,李春红,刘军考,陈维山. 采用压电马达直接驱动的舵机. 专利号: ZL201510428083.9(授权日期:2017.03.01) 58. 刘英想,徐冬梅,陈维山,冯培连,刘军考. 多工作模式复合型悬臂多足压电驱动器. 专利号: ZL201510428084.3(授权日期:2017.03.01) 57. 刘英想,陈维山,冯培连,刘军考,石胜君. 贴片式T型双足直线压电超声电机振子. 专利号: ZL201410039771.1(授权日期:2017.03.01) 56. 刘英想,徐冬梅,刘军考,陈维山. 十字形截面梁式贴片双足超声电机振子. 专利号: ZL201510012282.1(授权日期:2017.01.11) 55. 刘英想,闫纪朋,石胜君,熊怀银,陈维山. 贴片式圆环双足超声电机振子. 专利号: ZL201510060834.6(授权日期:2017.01.11) 2016 54. 刘英想,李春红,刘军考,陈维山. 采用压电振子驱动的四轴舵机. 专利号: ZL201510428082.4(授权日期:2016.09.07) 53. 刘英想,徐冬梅,刘军考,陈维山. 一种十字形对称梁式贴片单足超声电机振子. 专利号: ZL201510012283.6(授权日期:2016.09.07) 52. 陈维山,杨小辉,刘英想,刘军考,石胜君. 夹持式纵弯复合超声电机振子. 专利号: ZL201410293184.5(授权日期:2016.09.07) 51. 刘英想,冯培连,石胜君,陈维山,刘军考. 一种共振式拍动翼机器人. 专利号: ZL201510271267.9(授权日期:2016.08.31) 50. 刘英想,杨小辉,陈维山,刘军考,石胜君. 夹持式四足纵弯复合超声电机振子. 专利号: ZL201410293187.9(授权日期:2016.8.17) 49. 刘英想,陈维山,冯培连,刘军考,石胜君. 采用压电超声振子驱动的单自由度旋转机械臂. 专利号: ZL201410043680.5(授权日期:2016.6.22) 48. 刘英想,冯培连,陈维山,刘军考,石胜君. 采用四足压电驱动器的超精密直线平台的激励方法. 专利号: ZL201410293148.9(授权日期:2016..6.22) 47. 刘英想,冯培连,陈维山,刘军考,石胜君. 弯振复合模态足式压电驱动器实现跨尺度驱动的新方法. 专利号: ZL201410290777.6(授权日期:2016.5.25) 46. 刘英想,冯培连,陈维山,刘军考,石胜君. 纵弯复合模态足式压电驱动器实现跨尺度驱动的新方法. 专利号: ZL201410290913.1(授权日期:2016.5.25) 45. 陈维山,杨小辉,刘英想,刘军考,石胜君. 分区激励式三自由度超声电机振子. 专利号: ZL201410293174.1(授权日期:2016.5.25) 44. 刘英想,冯培连,陈维山,刘军考,石胜君. 多足旋转压电驱动器及其实现跨尺度驱动的激励方法. 专利号: ZL201410290754.5(授权日期:2016.4.6) 43. 刘英想,陈维山,冯培连,刘军考,石胜君. 压电超声振子驱动型汽车电动车窗. 专利号: ZL201410041963.6(授权日期:2016.4.6) 42. 刘英想,冯培连,陈维山,刘军考,石胜君. 纵振复合模态足式压电驱动器实现跨尺度驱动的新方法. 专利号: ZL201410293169.0(授权日期:2016.03.09) 41. 刘英想,陈维山,冯培连,刘军考,石胜君. 夹心式T型双足直线压电超声电机振子. 专利号: ZL201410039600.9(授权日期:2016.03.09) 40. 刘英想,杨小辉,陈维山,刘军考,石胜君. 压电金属复合梁及驱动该压电金属复合梁弯曲振动的方法. 专利号: ZL201210401075.1(授权日期:2016.01.20) 39. 刘英想,陈维山,刘军考,石胜君. 复合弯振双足旋转超声电机振子. 专利号: ZL201210397337.1 (授权日期:2016.01.20) 38. 刘英想,陈维山,冯培连,刘军考,石胜君. 基于压电超声振子驱动的两自由度运动平台. 专利号: ZL201410043671.6(授权日期:2016.01.13) 2015 37. 刘英想,杨小辉,陈维山,刘军考,石胜君. 夹心式压电金属复合梁及驱动该夹心式压电金属复合梁纵弯复合振动的方法. 专利号: ZL201210400862.4(授权日期:2015.9.23) 36. 陈维山,周详宇,刘军考,刘英想,石胜君. 贴片式方形超声波电机振子及其驱动方法. 专利号: ZL201210478729.0 (授权日期:2015.8.19) 35. 刘英想,陈维山,冯培连,刘军考,石胜君. 陶瓷嵌入式工字型四足直线超声电机振子. 专利号: ZL201110435876.5 (授权日期:2015.3.11) 2014 34. 刘英想,陈维山,刘军考,石胜君. 基于弯振夹心换能器的压电微喷装置. 专利号: ZL201210389763.0(授权日期:2014.10.8) 33. 刘英想,陈维山,刘军考,石胜君. 使用复合弯振双足直线超声振子的旋转电机. 专利号: ZL201110284033.X(授权日期:2014.6.4) 32. 刘英想,石胜君,陈维山,刘军考. 带弹性支撑的纵弯复合模态夹心式双足直线超声电机振子. 专利号: ZL201110318729.X(授权日期:2014.12.10) 31. 刘英想,刘军考,陈维山,石胜君. 采用楔形预紧的夹心式矩形四足直线超声电机振子. 专利号: ZL201110316765.2(授权日期:2014.10.8) 30. 刘英想,刘军考,陈维山,石胜君. 复合弯振夹心式双足直线超声电机振子. 专利号: ZL201110316781.1(授权日期:2014.6.4) 29. 刘英想,陈维山,冯培连,刘军考,石胜君. 贴片式工字型四足直线超声电机振子. 专利号: ZL201110435858.7 (授权日期:2014.10.8) 28. 刘英想,陈维山,冯培连,刘军考,石胜君. 夹心式工字型四足直线超声电机振子. 专利号: ZL201110435842.6 (授权日期:2014.4.23) 2013 27. 刘英想,陈维山,刘军考,石胜君. 使用复合弯振双足直线超声振子的直线平台. 专利号: ZL201110283990.0(授权日期:2013.10.9) 26. 陈维山,刘英想,刘军考,石胜君. 采用弹簧块预紧的圆筒型行波超声电机振子. 专利号: ZL 201110261975.6(授权日期:2013.11.13) 2012 25. 陈维山, 刘英想, 石胜君, 刘军考. 方形旋转超声电机振子. 专利号: ZL200910306051.6(授权日期:2012.3.4) 24. 陈维山, 刘英想, 石胜君, 刘军考. 矩形四足直线超声电机振子. 专利号: ZL200910306064.3(授权日期:2012.8.15) 2011 23. 刘军考, 刘英想, 陈维山, 谢涛, 石胜君. 纵振夹心换能器式圆筒定子及使用该定子的超声电机. 专利号: ZL200810064415.X(授权日期:2011.4.27) 22. 陈维山, 刘英想, 刘军考, 石胜君. 纵弯复合换能器式双圆筒型行波超声电机振子. 专利号: ZL200910072700.0(授权日期:2011.4.27) 21. 陈维山, 刘英想, 刘军考, 石胜君. 正交换能器圆筒型行波超声电机振子. 专利号: ZL200910072819.8(授权日期:2011.4.27) 20. 陈维山, 刘英想, 姚郁, 刘军考, 石胜君. 悬臂弯振换能器圆筒型驻波超声电机振子. 专利号: ZL200910072817.9(授权日期:2011.6.8) 19. 陈维山, 刘英想, 刘军考, 石胜君. 悬臂纵弯复合换能器圆筒型行波超声电机振子. 专利号: ZL200910072818.3(授权日期:2011.6.8) 18. 陈维山, 刘英想, 石胜君, 刘军考. U型双足直线超声电机振子. 专利号: ZL200910306063.9(授权日期:2011.6.1) 17. 陈维山, 刘英想, 姚郁, 刘军考, 石胜君. 悬臂弯振换能器圆环型驻波超声电机振子. 专利号: ZL200910072815.x(授权日期:2011.8.10) 16. 陈维山, 刘英想, 刘军考, 石胜君. 悬臂纵弯复合换能器圆环型行波超声电机振子. 申专利号: ZL200910072816.4(授权日期:2011.7.20) 15. 陈维山, 刘英想, 石胜君, 刘军考. T型直线超声电机振子. 专利号: ZL200910306062.4(授权日期:2011.7.20) 14. 陈维山, 刘英想, 石胜君, 刘军考. 弯振模态梁式直线超声电机振子. 专利号: ZL200910072702.x(授权日期:2011.7.20) 13. 陈维山, 刘英想, 石胜君, 刘军考. 弯振模态梁式旋转超声电机振子. 专利号: ZL200910072701.5(授权日期:2011.7.20) 2010 12. 陈维山, 刘英想, 刘军考, 谢涛, 石胜君. 纵弯夹心换能器式圆盘定子及使用该定子的超声电机. 专利号: ZL200810064408.X (授权日期:2010.7.14) 11. 陈维山, 刘英想, 刘军考, 谢涛, 石胜君. 弯振夹心换能器式圆盘型双转子超声电机. 专利号: ZL200810064870.X(授权日期:2010.8.4) 10. 陈维山, 刘英想, 刘军考, 谢涛, 石胜君. 弯振夹心换能器式圆筒定子及使用该定子的超声电机. 专利号: ZL200810064414.5(授权日期:2010.9.8) 9. 陈维山, 刘英想, 刘军考, 谢涛, 石胜君. 弯振夹心换能器式圆盘定子及使用该定子的超声电机. 专利号: ZL200810064411.1(授权日期:2010.11.17) 8. 陈维山, 刘英想, 刘军考, 谢涛, 石胜君. 夹心式圆筒定子及使用该定子的超声电机. 专利号: ZL200810064868.2(授权日期:2010.11.17) 7. 陈维山, 刘英想, 刘军考, 谢涛, 石胜君. 纵弯夹心换能器式圆筒定子及使用该定子的超声电机. 专利号: ZL200810064413.0(授权日期:2010.12.15) 6. 陈维山, 刘英想, 刘军考, 谢涛, 石胜君. 夹心式圆盘定子及使用该定子的超声电机. 专利号: ZL200810064869.7(授权日期:2010.12.15) 5. 刘军考, 刘英想, 陈维山, 谢涛, 石胜君. 弯振夹心换能器式圆筒型双转子超声电机. 专利号: ZL200810064871.4(授权日期:2010.8.4) 4. 刘军考, 刘英想, 陈维山, 谢涛, 石胜君. 纵振夹心换能器式圆盘型双转子超声电机. 专利号: ZL200810064872.9(授权日期:2010.8.4) 3. 刘军考, 刘英想, 陈维山, 谢涛, 石胜君. 纵振夹心换能器式圆筒型双转子超声电机. 专利号: ZL200810064873.3(授权日期:2010.9.8) 2. 刘军考, 刘英想, 陈维山, 谢涛, 石胜君. 纵振夹心换能器式圆盘定子及使用该定子的超声电机. 专利号: ZL200810064407.5(授权日期:2010.7.14) 1. 刘军考, 刘英想, 陈维山, 谢涛. 具有升潜模块和尾部模块的仿生机器鱼. 专利号: ZL200810064324.6(授权日期:2010.10.6) 讲授课程(Courses) 名称 1. 《压电超声驱动技术》,本科生创新研修课,讲授20学时 《Piezoelectric ultrasonic actuating technologies》, Course Brief Description: Ultrasonic actuating technology based on piezoelectric effect is a new type of actuating mode that transfers electric energy to mechanical energy via piezoelectric effect of the piezoelectric ceramic. It exhibit merits such as low speed and high torque, high torque density, flexibility of design, compact structure, higher position accuracy, quick response, self-locking when power off and nonelectromagnetic radiation. These merits make it a hot issue and attract broad attentions from researchers in the world. This course contains two basic parts (the theoretical part and the practical part): (1) Theoretical part: Based on the basic actuating principle, the research state and the development state of the ultrasonic and piezoelectric actuation will be introduced firstly. Then, the class and basic structure of the piezoelectric actuator will be discussed. The innovative design of piezoelectric-metal beam type ultrasonic actuator, contains how to select the combination of basic vibration modes, how to construct the actuator and the vibration characteristic analysis, is the key content of this part. (2) Practical part: The students will be encouraged to design and fabricate different types of ultrasonic actuators based on the knowledge taught in the theoretical part. The longitudinal vibrations hybrid actuators, the bending vibrations hybrid actuators and the longitudinal and bending vibration hybrid actuators are the three basic types that involved in the practical part. After the fabrication of the prototype, input impedance characteristics, vibration characteristics and mechanical output ability will be tested by experiments. From this course, the students can have a comprehensive understanding about the ultrasonic actuating technology based on piezoelectric effect, and master with the design, fabrication and measurement method of ultrasonic actuator. This course can development the students’ academic view and creative thinking, and train their ability on thinking and solving problems about the interdisciplinary field. 3. 《仿生机器人与机器鱼》,新生研讨课,讲授16学时 《Bionic robot and robot fish》, Course Brief Description: Bionic robot is a special type robot combined by the life science and engineering technology science, which is a research hotspot in recent years. The multi-legged robot, humanoid robot, micro robot and underwater robot belong to the bionic robot. The bionic robots have improved the robot science greatly by referencing the basic biological principles, which have significant prospects in fields of industry, medical, national defense, agriculture, et al. In this course, development history, basic theory, investigation method and the newest trends of the bionic robot will be introduced; the research findings in field of robot fish will be introduced in detail. This course can inspire the research interest of freshmen in this area, train the basic skills of bibliography retrieving, academic report writing, technical route planning and research findings presenting, inspire the research spirit on exploring and develop the research ability on independent thinking and teamwork.

刘英想
刘英想
SCI学术指导
老师留言
X

注册会员并查看更多信息

注册教师主页会员,申请查看完整信息,请准确输入邮箱地址用于接收信息,网址处请填写本页面的网页地址。
本页面网址为:https://www.jiaoshizhuye.com/a/heilongjiang/hgd/92068/

发明专利申请实用新型专利申请软件著作权申请版权登记申请