姓名 | 刘扬 | 性别 | 刘扬 |
学校 | 哈尔滨工业大学 | 部门 | 计算学部 |
学位 | 刘扬 | 学历 | 刘扬 |
职称 | 教授 | 联系方式 | 【发送到邮箱】 |
邮箱 | 【发送到邮箱】 | 人气 | |
软件产品登记测试 | 软件著作权666元代写全部资料 | 实用新型专利1875代写全部资料 集群智慧云企服 / 知识产权申请大平台 微信客服在线:543646 急速申请 包写包过 办事快、准、稳 |
基本信息 科学研究 教育教学 论文专著 招生 新建主栏目 基本信息 名称 刘扬,博士,哈工大计算机学院教授,博士生导师。哈尔滨工业大学机器学习研究中心副主任,主要从事机器学习理论及其应用研究,目前主要从事表示学习与贝叶斯推理、强化学习与多智能体、生成模型与分子设计(AI for Science)等研究。在TKDE、TSMC、BIB、CVIU、IVC、Neurocomputing、Nucleic acids research、TCBB、ICIP、计算机学报、软件学报、自动化学报等国内外著名期刊和会议上发表论文70余篇。主持国家自然科学基金项目4项、重点研发子课题2项、完成360等公司资助项目5项。完成的相关机器学习软件包已在国家重要部门投入使用。 是国家精品课程《数据结构与算法》的主讲教师、2010年在哈工大首次开设《机器学习》本科课程,并获得2019年中国计算机专业优秀教师奖励。 是中国人工智能学会机器学习专委会委员、中国计算机学会会员、IEEE会员。 获奖情况,包括如下: 1. 获得2019年度中国计算机专业优秀教师奖励 (1/1) 2. 获得2019年教育部自然科学二等奖 (5/5) 3. 获得2020年第十届吴文俊人工智能自然科学奖 (4/5) 4. 获得2014年哈工大青年教师研究生课程教学竞赛二等奖 (1/1) 研究领域 名称 主要研究领域包括:机器学习理论及应用、图像理解(对象检测与分割)、面向无人飞行器的高效强化学习研究,目前开展如下问题研究,欢迎感兴趣的本科生及研究生加入本研究室。 研究问题一:结合深度学习及概率图模型的图网络嵌入研究 研究问题二:Bottom up/Top down (encoder/decoder)框架下的图像检测、分割与理解 研究问题三:高效强化学习算法 科研项目 项目名称 项目来源 开始时间 结束时间 项目经费 担任角色 项目类别 项目状态 简单介绍 项目名称 1. 可微分深度注意模型及其参数自适应方法研究 项目来源 国家自然科学基金面上项目 开始时间 结束时间 项目经费 担任角色 项目类别 项目状态 简单介绍 对应第2个研究问题 项目名称 2. 异构计算平台的变分推理算法及其软件包 项目来源 国家重点研发项目 开始时间 结束时间 项目经费 担任角色 项目类别 项目状态 简单介绍 对应第1个研究问题。 项目名称 3. 精准医学文本知识发现 项目来源 国家重点研发项目 开始时间 结束时间 项目经费 担任角色 项目类别 项目状态 简单介绍 对应第1个研究问题。 项目名称 4. 基于异构计算的超大规模并行深度学习平台搭建 项目来源 360公司 开始时间 结束时间 项目经费 担任角色 项目类别 项目状态 简单介绍 项目名称 5. 基于强化学习的控制策略研究 项目来源 开始时间 结束时间 项目经费 担任角色 项目类别 项目状态 简单介绍 教材译著 名称 1. 机器学习基础教程. Rogers S., Girolami M.著; 郭茂祖, 王春宇, 刘扬, 刘晓燕译. 北京: 机械工业出版社. 2013.10 2. 人工智能:复杂问题求解的结构和策略(原书第6版). Luger G. F.著; 郭茂祖, 刘扬, 玄萍, 王春宇译. 北京: 机械工业出版社. 2009.12 讲授课程 名称 目前讲授课程: 机器学习(本科生,获得2019年中国计算机专业优秀教师奖励,55位国内高校计算机专业优秀教师将获得公益性奖励 (baidu.com)) 机器学习理论与算法(研究生) 曾经讲授课程: 数据结构与算法(本科生,国家精品资源课。爱课程 (icourses.cn),数据结构与算法-哈尔滨工业大学_哔哩哔哩_bilibili) 数字媒体技术(研究生) 自然计算专题(研究生) 计算机系统结构(在职研究生) 在读研究生 名称 在读博士生: 张浩 刘士荣 王程 在读硕士生: 1. 张雪 2. 盖文昊 3. 曹坤 4. 胡云帆 5. 张乙 6. 段帅 协助指导毕业博士生 名称 协助指导博士毕业生 序号 姓名 博士论文题目 毕业去向 1. 李阳 基于深度学习的弱监督图像分割方法研究 北京建筑大学 2. 潘智勇 基于结构化主题模型的图像分类方法研究 北华大学 3. 吴伟宁 主动学习算法中采样策略研究 哈尔滨工程大学 硕士毕业生 名称 硕士毕业生 序号 姓名 研究方向 毕业去向 1. 刘士荣 离线强化学习 组内读博 2. 王程 图网络、药靶预测 组内读博 3. 王天一 强化学习、稀疏奖励 华为 4. 夏铭远 强化学习、表示压缩 华为 5. 张锦航 分子生成、强化学习、图网络 美团 6. 段晨婕 知识图谱、对齐 启元实验室 7. 杨晶晶 蛋白亲和力预测 微软 8. 侯俊杰 药靶预测 华为 9. 卓兴良 知识图谱、对齐 美团 10. 江坷 分子子结构表示方法 阿里 11. 闫江予 分子属性预测、图网络 12. 张浩 知识图谱、远程监督 组内读博 13. 赵洪东 弱监督学习、图像分割 中央办公厅 14. 郭雨晨 图网络、致病基因挖掘 15. 王迪 强化学习 百度 16. 涂任飞 自编码器 北师大读博 17. 梁天铭 知识图谱、远程监督 中山大学读博 18. 徐鲲鹏 关系表示学习 华为 19. 何泽众 强化学习、飞控 20. 苏荣 知识图谱 腾讯 21. 韩国亮 强化学习、飞控 22. 王璞 图像分割、弱监督学习 23. 李傲 图像检索、哈希编码 24. 陈少鹏 深度学习异构平台并行化 百度 25. 刘春茹 26. 柴子峰 广告预测 百度 27. 王可 图像检测 360 28. 李盼 图像检测 中电54所 29. 李阳 图像分割 组内读博 30. 邢林林 组内读博 部分本科毕业生 名称 部分指导本科毕业生 姓名 研究方向 毕业去向 陈泽宇 机器学习 东京工业大学 吴月明 计算机视觉 荷兰niversity of twente 白广通 机器学习 程子昂 计算机视觉 澳大利亚国立大学读博 王中秋 机器学习 俄亥俄州立大学博士 陈凌 机器学习 加拿大 基本信息 名称 [1] Liang Tianming, Liu Yang, Liu Xiaoyan, Zhang Hao, Sharma Gaurav, Guo Maozu.Distantly-supervised long-tailed relation extraction using constraint graphs[J].IEEE Transactions on Knowledge and Data Engineering,2022. [2] 刘扬, 何泽众, 王春宇, 郭茂祖.基于 DDPG 算法的末制导律设计研究[J].计算机学报,2021, 44 (9): 1854-1865. [3] Tu Renfei, Liu Yang, Xue Yongzeng, Wang Cheng, Guo Maozu.Neighbor Embedding Variational Autoencoder[J].arXiv preprint arXiv:2103.11349,2021. [4] Liu Yang, Guo Yuchen, Liu Xiaoyan, Wang Chunyu, Guo Maozu.Pathogenic gene prediction based on network embedding[J].Briefings in Bioinformatics,2021, 22 (4): bbaa353. [5] 李阳, 王璞, 刘扬, 刘国军, 王春宇, 刘晓燕, 郭茂祖.基于显著图的弱监督实时目标检测[J].自动化学报,2020, 46 (2): 242-255. [6] Yanjuan Li, Mingzhe Zang, Xiaoyan Liu, Yang Liu, Maozu Guo.Distant Supervision Relation Extraction Combining Attention Mechanism and Ontology[J].Journal of Frontiers of Computer Science & Technology,2020, 14 (9): 1554. [7] Yang Li, Pu Wang, Yang Liu, Guo-Jun Liu, Chun-Yu Wang, Xiao-Yan Liu, Mao-Zu Guo.Weakly supervised real-time object detection based on saliency map[J].Acta Automatica Sinica,2020, 46 (2): 242-255. [8] Li Yang, Liu Yang, Liu Guojun, Guo Maozu.Weakly supervised semantic segmentation by iterative superpixel-CRF refinement with initial clues guiding[J].Neurocomputing,2020, 391: 25-41. [9] 李阳, 刘扬, 刘国军, 郭茂祖.基于对象位置线索的弱监督图像语义分割方法[J].软件学报,2019, 31 (11): 3640-3656. [10] 李阳, 刘扬, 刘国军, 郭茂祖.Weakly Supervised Image Semantic Segmentation Method Based on Object Location Cues[J].Journal of Software,2019, 31 (11): 3640-3656. [11] Wang Chunyu, Guo Junling, Zhao Ning, Liu Yang, Liu Xiaoyan, Liu Guojun, Guo Maozu.A cancer survival prediction method based on graph convolutional network[J].IEEE transactions on nanobioscience,2019, 19 (1): 117-126. [12] Liu Guojun, Liu Yang, Guo Maozu, Li Peng, Li Mingyu.Variational inference with Gaussian mixture model and householder flow[J].Neural Networks,2019, 109: 43-55. [13] Zhai Deming, Li Ao, Li Yang, Liu Yang, Liu Guojun, Liu Xianming, Guo Maozu. Discrete Manifold-Regularized Collaborative Filtering for Large-Scale Recommender Systems[C].Advances in Multimedia Information Processing–PCM 2018: 19th Pacific-Rim Conference on Multimedia, Hefei, China, September 21-22, 2018, Proceedings, Part I,2018: 513-523. [14] Wang Zihan, Shao Mingguang, Liu Guojun, Guo Maozu, Bi Jiandong, Liu Yang.Knowledge graph completion algorithm based on similarity between entities[J].Journal of Computer Applications,2018, 38 (11): 3089. [15] Pan Zhiyong, Liu Yang, Liu Guojun, Guo Maozu, Li Yang.Topic network: topic model with deep learning for image classification[J].Journal of Electronic Imaging,2018, 27 (3): 033009-033009. [16] Pan Zhiyong, Liu Yang, Liu Guojun, Guo Maozu, Li Mingyu.Spatial topic pyramid model: topic model with regional spatial information[J].Journal of Electronic Imaging,2018, 27 (5): 053025-053025. [17] Li Yang, Liu Yang, Liu Guojun, Zhai Deming, Guo Maozu.Weakly supervised semantic segmentation based on EM algorithm with localization clues[J].Neurocomputing,2018, 275: 2574-2587. [18] Li Yang, Liu Yang, Liu Guojun, Guo Maozu.Figure-ground segmentation based on class-independent shape priors[J].Journal of Electronic Imaging,2018, 27 (1): 013018-013018. [19] Guo Maozu, Wu Weining, Liu Yang. Active Framework by Sparsity Exploitation for Constructing a Training Set[C].Intelligent Computing Theories and Application: 14th International Conference, ICIC 2018, Wuhan, China, August 15-18, 2018, Proceedings, Part I 14,2018: 334-346. [20] Guo Maozu, Cheng Shuang, Wang Chunyu, Liu Xiaoyan, Liu Yang.Prediction of Potential Disease-Associated MicroRNAs Based on Hidden Conditional Random Field [J][J].Journal of Harbin Institute of Technology,2018, 25 (1): 57-66. [21] Yu Donghua, Guo Maozu, Liu Yang, Ren Shi-Jun, Liu Xiao-Yan, Liu Guo-Jun.K-medoids clustering algorithm based on distance inequality [J][J].Journal of Software,2017. [22] Cheng Ziang, Liu Yang, Liu Guojun.A new primal-dual algorithm for multilabel graph-cuts problems with approximate moves[J].Computer Vision and Image Understanding,2017, 165: 75-84. [23] Xu Yungang, Guo Maozu, Liu Xiaoyan, Wang Chunyu, Liu Yang, Liu Guojun.Identify bilayer modules via pseudo-3D clustering: applications to miRNA-gene bilayer networks[J].Nucleic acids research,2016, 44 (20): e152-e152. [24] Li Pan, Liu Yang, Liu Guojun, Guo Maozu, Pan Zhiyong.A robust local sparse coding method for image classification with Histogram Intersection Kernel[J].Neurocomputing,2016, 184: 36-42. [25] Cheng Shuang, Guo Maozu, Wang Chunyu, Liu Xiaoyan, Liu Yang. Inferring of miRNAs as biomarker via subspace dimensionality reduction and clustering[C].2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC),2016: 848-853. [26] 刘培娜, 刘国军, 郭茂祖, 刘扬, 李盼.非负局部约束线性编码图像分类算法[J].自动化学报,2015, 41 (7): 1235-1243. [27] Wang Chunyu, Guo Maozu, Liu Xiaoyan, Liu Yang, Zou Quan.SeedsGraph: an efficient assembler for next-generation sequencing data[J].BMC Medical Genomics,2015, 8 (2): 1-9. [28] Pan Zhiyong, Liu Yang, Liu Guojun, Guo Maozu, Li Yang. Topic network: topic model with deep learning for image classification[C].Knowledge Science, Engineering and Management: 8th International Conference, KSEM 2015, Chongqing, China, October 28-30, 2015, Proceedings 8,2015: 525-534. [29] Pan Zhiyong, Liu Yang, Liu Guojun, Guo Maozu, Li Pan.MTRF: a topic model with spatial information[J].Journal of Computer Applications,2015, 35 (10): 2715. [30] Liu Peina, Liu Guojun, Guo Maozu, Liu Yang, Li Pan.Image classification based on non-negative locality-constrained linear coding[J].Acta Autom Sin,2015, 41 (7): 1235-1243. [31] Liu Guojun, Tang Xianglong, Guo Maozu, Liu Yang.Harmonious competition learning for Gaussian mixtures[J].Neurocomputing,2015, 170: 228-239. [32] Liu Guojun, Liu Yang, Guo Maozu, Liu Peina, Wang Chunyu. Non-negative locality-constrained linear coding for image classification[C].Intelligence Science and Big Data Engineering. Image and Video Data Engineering: 5th International Conference, IScIDE 2015, Suzhou, China, June 14-16, 2015, Revised Selected Papers, Part I 5,2015: 462-471. [33] Cheng Shuang, Guo Maozu, Wang Chunyu, Liu Xiaoyan, Liu Yang, Wu Xuejian.MiRTDL: a deep learning approach for miRNA target prediction[J].IEEE/ACM transactions on computational biology and bioinformatics,2015, 13 (6): 1161-1169. [34] Xu Yungang, Guo Maozu, Zou Quan, Liu Xiaoyan, Wang Chunyu, Liu Yang.System-level insights into the cellular interactome of a non-model organism: inferring, modelling and analysing functional gene network of soybean (Glycine max)[J].PLoS One,2014, 9 (11): e113907. [35] Xu Yungang, Guo Maozu, Liu Xiaoyan, Wang Chunyu, Liu Yang.Inferring the soybean (Glycine max) microRNA functional network based on target gene network[J].Bioinformatics,2014, 30 (1): 94-103. [36] Xu Yungang, Guo Maozu, Liu Xiaoyan, Wang Chunyu, Liu Yang.SoyFN: a knowledge database of soybean functional networks[J].Database,2014, 2014. [37] Liu Yang, Wang Zhongqiu, Guo Maozu, Li Ping. Hidden conditional random field for lung nodule detection[C].2014 IEEE International Conference on Image Processing (ICIP),2014: 3518-3521. [38] Dai Qiguo, Guo Maozu, Guo Yingjie, Liu Xiaoyan, Liu Yang, Teng Zhixia.A least square method based model for identifying protein complexes in protein-protein interaction network[J].BioMed research international,2014, 2014. [39] Cheng Shuang, Guo Maozu, Wang Chunyu, Liu Xiaoyan, Liu Yang. Identification of functional miRNA regulatory modules and their associations via dynamic miRNA regulatory function[C].2014 Ieee International Conference on Bioinformatics and Biomedicine (Bibm),2014: 1-7. [40] Wu Weining, Liu Yang, Zeng Wei, Guo Maozu, Wang Chunyu, Liu Xiaoyan. Effective constructing training sets for object detection[C].2013 IEEE International Conference on Image Processing,2013: 3377-3380. [41] Wu Weining, Liu Yang, Guo Maozu, Wang Chunyu, Liu Xiaoyan.A probabilistic model of active learning with multiple noisy oracles[J].Neurocomputing,2013, 118: 253-262. [42] Wang Juan, Guo Maozu, Liu Xiaoyan, Liu Yang, Wang Chunyu, Xing Linlin, Che Kai.Lnetwork: an efficient and effective method for constructing phylogenetic networks[J].Bioinformatics,2013, 29 (18): 2269-2276. [43] Wang Juan, Guo Maozu, Che Kai, Wang Chunyu, Liu Xiaoyan, Liu Yang. A new distance computing method for DNA sequences in phylogenetic analysis[C].2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD),2013: 690-694. [44] Dai Qiguo, Guo Maozu, Liu Yang, Liu Xiaoyan, Chen Ling. MLPA: Detecting overlapping communities by multi-label propagation approach[C].2013 IEEE Congress on Evolutionary Computation,2013: 681-688. [45] 吴伟宁, 刘扬, 郭茂祖, 刘晓燕.基于采样策略的主动学习算法研究进展[J].计算机研究与发展,2012, 49 (6): 1162-1173. [46] Wu Weining, Liu Yang, Guo Maozu. Constructing training distribution by minimizing variance of risk criterion for visual category learning[C].2012 19th IEEE International Conference on Image Processing,2012: 101-104. [47] Wu Weining, Guo Maozu, Liu Yang. A method of active learning with optimal sampling strategy[C].2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE),2012: 725-729. [48] Weining Wu, Yang Liu, Maozu Guo, Xiaoyan Liu.Advances in active learning algorithms based on sampling strategy [J][J].Journal of Computer Research and Development,2012, 49 (6): 1162-1173. [49] Liu Ru, Liu Yang, Guo Maozu, Ma Rulin, Li Ping. The ROIs segmentation method of the lungs based on adaptive EM algorithm and edge gradient information[C].Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV),2012: 1. [50] Wu Weining, Guo Maozu, Liu Yang, Xu Runzhang. Active learning with optimal distribution for image classification[C].2011 International Conference on Multimedia Technology,2011: 132-136. [51] Liu Yang, Guo Maozu, Liu Wanyu. Detection of playfield with shadow and its application to player tracking[C].2011 IEEE International Workshop on Machine Learning for Signal Processing,2011: 1-5. [52] Zou Quan, Guo Maozu, Liu Yang, Xuan Ping.DuplexFinder: Predicting the miRNA? miRNA* duplex from the animal precursors[J].International Journal of Bioinformatics Research and Applications,2010, 6 (1): 69-81. [53] Wang Chunyu, Guo Maozu, Liu Yang. EST clustering in large dataset with MapReduce[C].2010 First International Conference on Pervasive Computing, Signal Processing and Applications,2010: 968-971. [54] Liu Yang, Xing Zhian, Deng Chao, Li Ping, Guo Maozu. Automatically detecting lung nodules based on shape descriptor and semi-supervised learning[C].2010 International Conference on Computer Application and System Modeling (ICCASM 2010),2010: V1-647-V1-650. [55] Zou Quan, Zhao Tuo, Liu Yang, Guo Maozu.Predicting RNA secondary structure based on the class information and Hopfield network[J].Computers in Biology and Medicine,2009, 39 (3): 206-214. [56] Zou Quan, Guo Maozu, Liu Yang, Zhang Taotao. An Improved Quick Algorithm for Aligning DNA/RNA Sequences[C].2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007),2007: 825-828. [57] Liang Dawei, Huang Qingming, Liu Yang, Zhu Guangyu, Gao Wen.Video2Cartoon: A system for converting broadcast soccer video into 3D cartoon animation[J].IEEE Transactions on consumer Electronics,2007, 53 (3): 1138-1146. [58] Liu Yang, Liang Dawei, Huang Qingming, Gao Wen. Self-calibration based 3D information extraction and application in broadcast soccer video[C].Computer Vision–ACCV 2006: 7th Asian Conference on Computer Vision, Hyderabad, India, January 13-16, 2006. Proceedings, Part II 7,2006: 852-861. [59] Liu Yang, Liang Dawei, Huang Qingming, Gao Wen.Extracting 3D information from broadcast soccer video[J].Image and Vision Computing,2006, 24 (10): 1146-1162. [60] Liu Yang, Huang Qingming, Gao Wen, Ye Qixiang.Playfield detection using adaptive GMM and its application in sports video analysis[J].Jisuanji Yanjiu yu Fazhan(Computer Research and Development),2006, 43 (7): 1207-1215. [61] Zhu Guangyu, Liang Dawei, Liu Yang, Huang Qingming, Gao Wen. Improving particle filter with support vector regression for efficient visual tracking[C].IEEE International Conference on Image Processing 2005,2005: II-422. [62] Ye Qixiang, Huang Qingming, Jiang Shuqiang, Liu Yang, Gao Wen. Jersey number detection in sports video for athlete identification[C].Visual Communications and Image Processing 2005,2005: 1599-1606. [63] Liu Yang, Zeng Wei, Yao Hongxun. Online learning objectionable image filter based on SVM[C].Advances in Multimedia Information Processing-PCM 2004: 5th Pacific Rim Conference on Multimedia, Tokyo, Japan, November 30-December 3, 2004. Proceedings, Part I 5,2005: 304-311. [64] Liu Yang, Jiang Shuqiang, Ye Qixiang, Gao Wen, Huang Qingming. Playfield detection using adaptive GMM and its application[C].Proceedings.(ICASSP'05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005.,2005: ii/421-ii/424 Vol. 2. [65] Liu Yang, Huang Qingming, Ye Qixiang, Gao Wen. A new method to calculate the camera focusing area and player position on playfield in soccer video[C].Visual Communications and Image Processing 2005,2005: 1524-1533. [66] Liang Dawei, Liu Yang, Huang Qingming, Zhu Guangyu, Jiang Shuqiang, Zhang Zhebin, Gao Wen. Video2Cartoon: Generating 3D cartoon from broadcast soccer video[C].Proceedings of the 13th annual ACM international conference on Multimedia,2005: 217-218. [67] Liang Dawei, Liu Yang, Huang Qingming, Gao Wen. A scheme for ball detection and tracking in broadcast soccer video[C].Advances in Multimedia Information Processing-PCM 2005: 6th Pacific Rim Conference on Multimedia, Jeju Island, Korea, November 13-16, 2005, Proceedings, Part I 6,2005: 864-875. [68] Zeng Wei, Gao Wen, Zhang Tao, Liu Yang. Image guarder: An intelligent detector for adult images[C].Asian conference on computer vision,2004: 1080-1084. [69] Wei Zeng, Wen Gao, Zhang Tao, Liu Yang. Image Guarder: an intelligent detector for adult[C].Asian Conf. on Computer Vision,2004: 198-203. [70] Liu Yang, Wang Weiqiang, Gao Wen, Zeng Wei. A novel compressed domain shot segmentation algorithm on H. 264/AVC[C].2004 International Conference on Image Processing, 2004. ICIP'04.,2004: 2235-2238. [71] Guo Maozu, Liu Yang, Malec Jacek.A new Q-learning algorithm based on the metropolis criterion[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),2004, 34 (5): 2140-2143. [72] Ye Qixiang, Gao Wen, Zeng Wei, Zhang Tao, Wang Weiqiang, Liu Yang. Objectionable image recognition system in compression domain[C].Intelligent Data Engineering and Automated Learning: 4th International Conference, IDEAL 2003, Hong Kong, China, March 21-23, 2003. Revised Papers 4,2003: 1131-1135. 博士、硕士等招生 名称 本研究组每年招收: 2024年招收2名 计算机科学与技术、人工智能方向博士研究生; 2024年招收3名 计算机科学与技术 或 软件工程 专业的硕士研究生; 2023年招收5名 计算机科学与技术 或 人工智能 专业的本科毕设学生; (特别欢迎数学学科想进入到计算机学科读研的同学)。 研究方向:对机器学习理论与方法,多智能体与高效强化学习,生成模型与分子设计等 欢迎对上述领域感兴趣的同学进入到机器学习研究中心自然计算研究室。 联系方式:liuyang@hit.edu.cn 优秀本科生进组实习 名称 欢迎计算机科学/软件工程,应用数学 或者相近学科本科生进入到本组实习。 联系方式:liuyang@hit.edu.cn
注册教师主页会员,申请查看完整信息,请准确输入邮箱地址用于接收信息,网址处请填写本页面的网页地址。
本页面网址为:https://www.jiaoshizhuye.com/a/heilongjiang/hgd/91513/